ﻻ يوجد ملخص باللغة العربية
The advancement of science as outlined by Popper and Kuhn is largely qualitative, but with bibliometric data it is possible and desirable to develop a quantitative picture of scientific progress. Furthermore it is also important to allocate finite resources to research topics that have growth potential, to accelerate the process from scientific breakthroughs to technological innovations. In this paper, we address this problem of quantitative knowledge evolution by analysing the APS publication data set from 1981 to 2010. We build the bibliographic coupling and co-citation networks, use the Louvain method to detect topical clusters (TCs) in each year, measure the similarity of TCs in consecutive years, and visualize the results as alluvial diagrams. Having the predictive features describing a given TC and its known evolution in the next year, we can train a machine learning model to predict future changes of TCs, i.e., their continuing, dissolving, merging and splitting. We found the number of papers from certain journals, the degree, closeness, and betweenness to be the most predictive features. Additionally, betweenness increases significantly for merging events, and decreases significantly for splitting events. Our results represent a first step from a descriptive understanding of the Science of Science (SciSci), towards one that is ultimately prescriptive.
Human mobility has a significant impact on several layers of society, from infrastructural planning and economics to the spread of diseases and crime. Representing the system as a complex network, in which nodes are assigned to regions (e.g., a city)
This pair of CAS lectures gives an introduction for accelerator physics students to the framework and terminology of machine learning (ML). We start by introducing the language of ML through a simple example of linear regression, including a probabil
High-temperature alloy design requires a concurrent consideration of multiple mechanisms at different length scales. We propose a workflow that couples highly relevant physics into machine learning (ML) to predict properties of complex high-temperatu
Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the APS publications data sets, we ask in this letter how new knowledge is built upon o
Classical and exceptional Lie algebras and their representations are among the most important tools in the analysis of symmetry in physical systems. In this letter we show how the computation of tensor products and branching rules of irreducible repr