ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the spin-$1/2$ Heisenberg model on the triangular lattice with the antiferromagnetic first ($J_1$) and second ($J_2$) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation function, we fin d a $120^{circ}$ magnetic order phase for $J_2 lesssim 0.07 J_1$ and a stripe antiferromagnetic phase for $J_2 gtrsim 0.15 J_1$. Between these two phases, we identify a spin liquid region characterized by the exponential decaying spin and dimer correlations, as well as the large spin singlet and triplet excitation gaps on finite-size systems. We find two near degenerating ground states with distinct properties in two sectors, which indicates more than one spin liquid candidates in this region. While the sector with spinon is found to respect the time reversal symmetry, the even sector without a spinon breaks such a symmetry for finite-size systems. Furthermore, we detect the signature of the fractionalization by following the evolution of different ground states with inserting spin flux into the cylinder system. Moreover, by tuning the anisotropic bond coupling, we explore the nature of the spin liquid phase and find the optimal parameter region for the gapped $Z_2$ spin liquid.
138 - Wei Zhu 2015
Using the Kepler planet sample from Buchhave et al. and the statistical method clarified by Schlaufman, I show that the shorter-period super-Earths have a different dependence on the host star metallicity from the longer-period super-Earths, with the transition period being in the period range from 70 to 100 days. The hosts of shorter-period super-Earths are on average more metal-rich than those of longer-period super-Earths. The existence of such a transition period cannot be explained by any single theory of super-Earth formation, suggesting that super-Earths have formed via at least two mechanisms.
81 - Wei Zhu , A. Udalski , A. Gould 2015
We report the first mass and distance measurement of a caustic-crossing binary system OGLE-2014-BLG-1050L using the space-based microlens parallax method. emph{Spitzer} captured the second caustic-crossing of the event, which occurred $sim$10 days be fore that seen from Earth. Due to the coincidence that the source-lens relative motion was almost parallel to the direction of the binary-lens axis, the four-fold degeneracy, which was known before only to occur in single-lens events, persists in this case, leading to either a lower-mass (0.2 $M_odot$ and 0.07 $M_odot$) binary at $sim$1.1 kpc or a higher-mass (0.9 $M_odot$ and 0.35 $M_odot$) binary at $sim$3.5 kpc. However, the latter solution is strongly preferred for reasons including blending and lensing probability. OGLE-2014-BLG-1050L demonstrates the power of microlens parallax in probing stellar and substellar binaries.
We study the quantum phase diagram of the spin-$1/2$ Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions $J_1$, $J_2$, and $J_3$ by means of density matrix renormalization group. For small $J_2$ and $J_3$, thi s model sustains a time-reversal invariant quantum spin liquid phase. With increasing $J_2$ and $J_3$, we find in addition a $q=(0,0)$ N{e}el phase, a chiral spin liquid phase, a valence-bond crystal phase, and a complex non-coplanar magnetically ordered state with spins forming the vertices of a cuboctahedron known as a cuboc1 phase. Both the chiral spin liquid and cuboc1 phase break time reversal symmetry in the sense of spontaneous scalar spin chirality. We show that the chiralities in the chiral spin liquid and cuboc1 are distinct, and that these two states are separated by a strong first order phase transition. The transitions from the chiral spin liquid to both the $q=(0,0)$ phase and to time-reversal symmetric spin liquid, however, are consistent with continuous quantum phase transitions.
184 - Zefei Wu , Yu Han , Wei Zhu 2014
We demonstrate that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. Bernal-stacked few-layer graphene has been investigated by analyzing its Landau level spectra through quant um capacitance measurements. We find that in trilayer graphene, the interlayer interaction parameters were similar to that of graphite. However, in tetralayer graphene, the hopping parameters between the bulk and surface bilayers are quite different. This shows a direct evidence for the surface relaxation phenomena. In spite of the fact that the Van der Waals interaction between the carbon layers is thought to be insignificant, we suggest that the interlayer interaction is an important factor in explaining the observed results and the symmetry-breaking effects in graphene sublattice are not negligible.
202 - Wei Zhu 2014
We use Kepler short cadence light curves to constrain the oblateness of planet candidates in the Kepler sample. The transits of rapidly rotating planets that are deformed in shape will lead to distortions in the ingress and egress of their light curv es. We report the first tentative detection of an oblate planet outside of the solar system, measuring an oblateness of $0.22 pm 0.11$ for the 18 $M_J$ mass brown dwarf Kepler 39b (KOI-423.01). We also provide constraints on the oblateness of the planets (candidates) HAT-P-7b, KOI-686.01, and KOI-197.01 to be < 0.067, < 0.251, and < 0.186, respectively. Using the Q-values from Jupiter and Saturn, we expect tidal synchronization for the spins of HAT-P-7b, KOI-686.01 and KOI-197.01, and for their rotational oblateness signatures to be undetectable in the current data. The potentially large oblateness of KOI-423.01 (Kepler 39b) suggests that the Q-value of the brown dwarf needs to be two orders of magnitude larger than that of the solar system gas giants to avoid being tidally spun-down.
275 - Wei Zhu 2014
We conduct the first microlensing simulation in the context of planet formation model. The planet population is taken from the Ida & Lin core accretion model for $0.3M_odot$ stars. With $6690$ microlensing events, we find for a simplified Korea Micro lensing Telescopes Network (KMTNet) the fraction of planetary events is $2.9%$ , out of which $5.5%$ show multiple-planet signatures. The number of super-Earths, super-Neptunes and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 min sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high-magnification events. The uniformly high-cadence observations expected for KMTNet also result in $sim 55%$ of all detected planets being non-caustic-crossing, and more low-mass planets even down to Mars-mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.
We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J1 and J2, which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z2 spin liquid. We use the density matrix renormalization group approach with explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with different boundary conditions. With increasing J2, we find a Neel phase, a plaquette valence-bond (PVB) phase with a finite spin gap, and a possible spin liquid in a small region of J2 between these two phases. From the finite-size scaling of the magnetic order parameter, we estimate that the Neel order vanishes at J2/J1~0.44. For 0.5<J2/J1<0.61, we find dimer correlations and PVB textures whose decay lengths grow strongly with increasing system width, consistent with a long-range PVB order in the two-dimensional limit. The dimer-dimer correlations reveal the s-wave character of the PVB order. For 0.44<J2/J1<0.5, spin order, dimer order, and spin gap are small on finite-size systems and appear to scale to zero with increasing system width, which is consistent with a possible gapless SL or a near-critical behavior. We compare and contrast our results with earlier numerical studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا