ﻻ يوجد ملخص باللغة العربية
We conduct the first microlensing simulation in the context of planet formation model. The planet population is taken from the Ida & Lin core accretion model for $0.3M_odot$ stars. With $6690$ microlensing events, we find for a simplified Korea Microlensing Telescopes Network (KMTNet) the fraction of planetary events is $2.9%$ , out of which $5.5%$ show multiple-planet signatures. The number of super-Earths, super-Neptunes and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 min sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high-magnification events. The uniformly high-cadence observations expected for KMTNet also result in $sim 55%$ of all detected planets being non-caustic-crossing, and more low-mass planets even down to Mars-mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.
We present the analysis of four candidate short duration binary microlensing events from the 2006-2007 MOA Project short event analysis. These events were discovered as a byproduct of an analysis designed to find short timescale single lens events th
We compare the planet-to-star mass-ratio distribution measured by gravitational microlensing to core accretion theory predictions from population synthesis models. The core accretion theorys runaway gas accretion process predicts a dearth of intermed
We present the first short-duration candidate microlensing events from the Kepler K2 mission. From late April to early July 2016, Campaign 9 of K2 obtained high temporal cadence observations over a 3.7 square degree region of the Galactic bulge. Its
Interferometric observations of microlensing events have the potential to provide unique constraints on the physical properties of the lensing systems. In this work, we first present a formalism that closely combines interferometric and microlensing
We present an analysis of the large set of microlensing events detected so far toward the Galactic center with the purpose of investigating whether some of the dark lenses are located in Galactic globular clusters. We find that in four cases some eve