ترغب بنشر مسار تعليمي؟ اضغط هنا

Pionless effective field theory in a finite volume (FVEFT$_{pi!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{pi!/}$ with the stochastic variati onal method, the spectra of nuclei with atomic number $Ain{2,3}$ are matched to existing finite-volume LQCD calculations at heavier-than-physical quark masses corresponding to a pion mass $m_pi=806$ MeV, thereby enabling infinite-volume binding energies to be determined using infinite-volume variational calculations. Based on the variational wavefunctions that are constructed in this approach, the finite-volume matrix elements of various local operators are computed in FVEFT$_{pi!/}$ and matched to LQCD calculations of the corresponding QCD operators in the same volume, thereby determining the relevant one and two-body EFT counterterms and enabling an extrapolation of the LQCD matrix elements to infinite volume. As examples, the scalar, tensor, and axial matrix elements are considered, as well as the magnetic moments and the isovector longitudinal momentum fraction.
Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the quark masses to remove strong isospin breaking effects. A non-relativistic effective field theory, which perturbatively includes finite-volume Coulomb effects, is analyzed for systems of multiple charged hadrons and found to accurately reproduce the lattice QCD+QED results. QED effects on charged multi-hadron systems beyond Coulomb photon exchange are determined by comparing the two- and three-body interaction parameters extracted from the lattice QCD+QED results for charged and neutral multi-hadron systems.
246 - P. E. Shanahan , W. Detmold 2018
The distributions of pressure and shear forces inside the proton are investigated using lattice Quantum Chromodynamics (LQCD) calculations of the energy momentum tensor, allowing the first model-independent determination of these fundamental aspects of proton structure. This is achieved by combining recent LQCD results for the gluon contributions to the energy momentum tensor with earlier calculations of the quark contributions. The utility of LQCD calculations in exploring, and supplementing, the assumptions in a recent extraction of the pressure distribution in the proton from deeply virtual Compton scattering experiments is also discussed. Based on this study, the target kinematics for experiments aiming to determine the pressure and shear distributions with greater precision at Thomas Jefferson National Accelerator Facility and a future Electron Ion Collider are investigated.
A future Electron-Ion Collider will enable the gluon contributions to the gravitational form factors of the proton to be constrained experimentally for the first time. Here, the first calculation of these form factors from lattice Quantum Chromodynam ics is presented. The calculations use a larger-than-physical value of the light quark mass corresponding to $m_pi sim 450$ MeV. All three form factors, which encode the momentum-dependence of the lowest moment of the spin independent gluon generalised parton distributions and are related to different components of the energy-momentum tensor, are resolved. In particular, the gluon $D$-term form factor, related to the pressure distribution inside the nucleon, is determined for the first time. The gluon contributions to the two gravitational form factors of the pion are also determined, and are compared to existing lattice determinations of the quark contributions to the gravitational form factors and to phenomenology.
It has been argued that the leading scalar-isoscalar WIMP-nucleus interactions receive parametrically enhanced contributions in the context of nuclear effective field theories. These contributions arise from meson-exchange currents (MECs) and potenti ally modify the impulse approximation estimates of these interactions by 10--60%. We point out that these MECs also contribute to the quark mass dependence of nuclear binding energies, that is, nuclear sigma-terms. In this work, we use recent lattice QCD calculations of the binding energies of the deuteron, He-3 and He-4 at pion masses near 500 MeV and 800 MeV, combined with the experimentally determined binding energies at the physical point, to provide approximate determinations of the sigma-terms for these light nuclei. For each nucleus, we find that the deviation of the corresponding nuclear sigma-term from the single-nucleon estimate is at the few percent level, in conflict with the conjectured enhancement. As a consequence, lattice QCD calculations currently indicate that the cross sections for scalar-isoscalar WIMP-nucleus interactions arising from fundamental WIMP interactions with quarks do not suffer from significant uncertainties due to enhanced meson-exchange currents.
Results of a high-statistics, multi-volume Lattice QCD exploration of the deuteron, the di-neutron, the H-dibaryon, and the Xi-Xi- system at a pion mass of m ~ 390 MeV are presented. Calculations were performed with an anisotropic n_f = 2+1 Clover di scretization in four lattice volumes of spatial extent L ~ 2.0, 2.5, 3.0 and 4.0 fm, with a lattice spacing of b_s ~ 0.123 fm in the spatial-direction, and b_t ~ b_s/3.5 in the time-direction. The Xi-Xi- is found to be bound by B_{Xi-Xi-} = 14.0(1.4)(6.7) MeV, consistent with expectations based upon phenomenological models and low-energy effective field theories constrained by nucleon-nucleon and hyperon-nucleon scattering data at the physical light-quark masses. We find weak evidence that both the deuteron and the di-neutron are bound at this pion mass, with binding energies of B_d = 11(05)(12) MeV and B_{nn} = 7.1(5.2)(7.3) MeV, respectively. With an increased number of measurements and a refined analysis, the binding energy of the H-dibaryon is B_H = 13.2(1.8)(4.0) MeV at this pion mass, updating our previous result.
Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HIgamma S.
An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 <= m_l / m_s <= 0.6, while pion masses are in the range 235 < m_pi < 680 MeV. A two-flavor chiral perturbation theory analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients bar{l}_3 and bar{l}_4 to be bar{l}_3 = 4.04(40)(+73-55) and bar{l}_4 = 4.30(51)(+84-60). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f_pi / f = 1.062(26)(+42-40) where f is the decay constant in the chiral limit. The most recent scale setting by the MILC Collaboration yields a postdiction of f_pi = 128.2(3.6)(+4.4-6.0)(+1.2-3.3) MeV at the physical pion mass.
254 - S.R. Beane , E. Chang , W. Detmold 2011
The pi+pi+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m_pi~390 MeV with an anisotropic n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L~2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b_s~0.123 fm in the spatial direction and b_t b_s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of pi+pi+ systems with both zero and non-zero total momentum in the lattice volume using Luschers method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m_pi^2 a r = 3+O(m_pi^2/Lambda_chi^2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.
143 - S.R. Beane , E. Chang , W. Detmold 2011
The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L ~ 2.0, 2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing of b_s ~ 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_pi ~ 390 MeV. The typical precision of the ground-state baryon mass determination is ~0.2%, enabling a precise exploration of the volume dependence of the masses, the Gell-Mann--Okubo mass relation, and of other mass combinations. A comparison of the volume dependence with the predictions of heavy baryon chiral perturbation theory is performed in both the SU(2)_L X SU(2)_R and SU(3)_L X SU(3)_R expansions. Predictions of the three-flavor expansion for the hadron masses are found to describe the observed volume dependences reasonably well. Further, the Delta-N-pi axial coupling constant is extracted from the volume dependence of the nucleon mass in the two-flavor expansion, with only small modifications in the three-flavor expansion from the inclusion of kaons and etas. At a given value of m_pi L, the finite-volume contributions to the nucleon mass are predicted to be significantly smaller at m_pi ~ 140 MeV than at m_pi ~ 390 MeV due to a coefficient that scales as ~ m_pi^3. This is relevant for the design of future ensembles of lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا