ﻻ يوجد ملخص باللغة العربية
An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 <= m_l / m_s <= 0.6, while pion masses are in the range 235 < m_pi < 680 MeV. A two-flavor chiral perturbation theory analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients bar{l}_3 and bar{l}_4 to be bar{l}_3 = 4.04(40)(+73-55) and bar{l}_4 = 4.30(51)(+84-60). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f_pi / f = 1.062(26)(+42-40) where f is the decay constant in the chiral limit. The most recent scale setting by the MILC Collaboration yields a postdiction of f_pi = 128.2(3.6)(+4.4-6.0)(+1.2-3.3) MeV at the physical pion mass.
We measure the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration, and extract the NLO low-energy constants l_3 and l_4 of SU(2) chiral perturbation theory. The data are generated in 2+1 flavor simulations wit
We have performed fits of the pseudoscalar masses and decay constants, from a variety of RBC-UKQCD domain wall fermion ensembles, to $SU(2)$ partially quenched chiral perturbation theory at next-to leading order (NLO) and next-to-next-to leading orde
We perform a detailed, fully-correlated study of the chiral behavior of the pion mass and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O(a)-improved Wilson fermions, at four values
We study various representations of infrared effective theory of SU(2) Gluodynamics as a (quantum) perfect lattice action. In particular we derive a monopole action and a string model of hadrons from SU(2) Gluodynamics. These are lattice actions whic
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing re