ﻻ يوجد ملخص باللغة العربية
Pionless effective field theory in a finite volume (FVEFT$_{pi!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{pi!/}$ with the stochastic variational method, the spectra of nuclei with atomic number $Ain{2,3}$ are matched to existing finite-volume LQCD calculations at heavier-than-physical quark masses corresponding to a pion mass $m_pi=806$ MeV, thereby enabling infinite-volume binding energies to be determined using infinite-volume variational calculations. Based on the variational wavefunctions that are constructed in this approach, the finite-volume matrix elements of various local operators are computed in FVEFT$_{pi!/}$ and matched to LQCD calculations of the corresponding QCD operators in the same volume, thereby determining the relevant one and two-body EFT counterterms and enabling an extrapolation of the LQCD matrix elements to infinite volume. As examples, the scalar, tensor, and axial matrix elements are considered, as well as the magnetic moments and the isovector longitudinal momentum fraction.
A systematic description of low-energy observables in light nuclei is presented. The effective field theory formalism without pions is extended to: i) predictions with next-to-leading-order (non-perturbatively) accuracy for the 4-helium binding energ
We calculate the electric dipole moments (EDMs) of three-nucleon systems at leading order in pionless effective field theory. The one-body contributions that arise from permanent proton and neutron EDMs and the two-body contributions that arise from
An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of
We analyze magnetic and axial two-nucleon contact terms in a combined large-$N_c$ and pionless effective field theory expansion. These terms play important roles in correctly describing, e.g., the low-energy cross section of radiative neutron capture
The proton-proton fusion reaction, $ppto de^+ u$, is studied in pionless effective field theory (EFT) with di-baryon fields up to next-to leading order. With the aid of the di-baryon fields, the effective range corrections are naturally resummed up t