ترغب بنشر مسار تعليمي؟ اضغط هنا

117 - M. Gennaro 2012
We have started a campaign to identify massive star clusters inside bright molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex is the first example of our study. The region is characterized by the presence of two young clu sters, DB10 and DB11, visible in the NIR, an ultra-compact HII region identified in the radio, several young stellar objects visible in the MIR, a bright diffuse nebulosity at 8mu m coming from PAHs and sub-mm continuum emission revealing the presence of cold dust. Given its position on the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region was thought to be a very massive site of star formation in proximity of the CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the regions properties were known only through photometry and its kinematic distance was very uncertain given its location at the tangential point. We aimed at better characterizing the region and assess whether it could be a site of massive star formation located close to the Galactic Center. We have obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the brightest members. We have additionally collected data in the radio, sub-mm and mid infrared, resulting in a quite different picture of the region. We have confirmed the presence of massive early B type stars and have derived a spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170 M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O star, confirmed by the excitation/ionization status of the nebula. No HeI diffuse emission is detected in our spectroscopic observations at 2.113mu m, which would be expected if the region was hosting more massive stars. Radio continuum measurements are also consistent with the region hosting at most early B stars.
We present the second-generation VLTI instrument GRAVITY, which currently is in the preliminary design phase. GRAVITY is specifically designed to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black ho le at center of the Milky Way. We have identified the key design features needed to achieve this goal and present the resulting instrument concept. It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near infrared wavefront sensing adaptive optics; fringe tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that the planned design matches the scientific needs; in particular that 10 microarcsecond astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given the availability of suitable phase reference sources.
Astrometric observations of resolved binaries provide estimates of orbital periods and will eventually lead to measurement of dynamical masses. Only a few very low mass star and brown dwarf masses have been measured to date, and the mass-luminosity r elation still needs to be calibrated. We have monitored 14 very low mass multiple systems for several years to confirm their multiplicity and, for those with a short period, derive accurate orbital parameters and dynamical mass estimates. We have used high spatial resolution images obtained at the Paranal, Lick and HST observatories to obtain astrometric and photometric measurements of the multiple systems at several epochs. The targets have periods ranging from 5 to 200 years, and spectral types in the range M7.5 - T5.5. All of our 14 multiple systems are confirmed as common proper motion pairs. One system (2MASSW J0920122+351742) is not resolved in our new images, probably because the discovery images were taken near maximum elongation. Six systems have periods short enough to allow dynamical mass measurements within the next 15 to 20years. We estimate that only 8% of the ultracool dwarfs in the solar neighborhood are binaries with separations large enough to be resolved, and yet periods short enough to derive astrometric orbital fits over a reasonable time frame with current instrumentation. A survey that doubles the number of ultracool dwarfs observed with high angular resolution is called for to discover enough binaries for a first attempt to derive the mass-luminosity relationship for very low-mass stars and brown dwarfs.
The Magellanic Clouds (MCs) offer an outstanding variety of young stellar associations, in which large samples of low-mass stars (with masses less than 1 solar mass) currently in the act of formation can be resolved and explored sufficiently with the Hubble Space Telescope. These pre-main sequence (PMS) stars provide a unique snapshot of the star formation process, as it is being recorded for the last 20 Myr, and they give important information on the low-mass Initial Mass Function (IMF) of their host environments. We present the latest results from observations with the Advanced Camera for Surveys (ACS) of such star-forming regions in the MCs, and discuss the importance of Hubble}for a comprehensive collection of substantial information on the most recent low-mass star formation and the low-mass IMF in the MCs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا