ترغب بنشر مسار تعليمي؟ اضغط هنا

Follow-up observations of binary ultra-cool dwarfs

230   0   0.0 ( 0 )
 نشر من قبل Herve Bouy
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrometric observations of resolved binaries provide estimates of orbital periods and will eventually lead to measurement of dynamical masses. Only a few very low mass star and brown dwarf masses have been measured to date, and the mass-luminosity relation still needs to be calibrated. We have monitored 14 very low mass multiple systems for several years to confirm their multiplicity and, for those with a short period, derive accurate orbital parameters and dynamical mass estimates. We have used high spatial resolution images obtained at the Paranal, Lick and HST observatories to obtain astrometric and photometric measurements of the multiple systems at several epochs. The targets have periods ranging from 5 to 200 years, and spectral types in the range M7.5 - T5.5. All of our 14 multiple systems are confirmed as common proper motion pairs. One system (2MASSW J0920122+351742) is not resolved in our new images, probably because the discovery images were taken near maximum elongation. Six systems have periods short enough to allow dynamical mass measurements within the next 15 to 20years. We estimate that only 8% of the ultracool dwarfs in the solar neighborhood are binaries with separations large enough to be resolved, and yet periods short enough to derive astrometric orbital fits over a reasonable time frame with current instrumentation. A survey that doubles the number of ultracool dwarfs observed with high angular resolution is called for to discover enough binaries for a first attempt to derive the mass-luminosity relationship for very low-mass stars and brown dwarfs.



قيم البحث

اقرأ أيضاً

Observations of radio emission in about 10 per cent of ultra-cool dwarfs (UCDs) indicate the presence of strong, persistent magnetic fields in these stars. These results are in contrast to early theoretical expectations on fully-convective dynamos, a nd to other tracers of magnetic activity, such as H {alpha} and X-ray luminosity. Radio-frequency observations have been key to physically characterising UCD magnetospheres, although explaining the diverse behaviour within them remains challenging. Most radio-frequency studies of UCDs have been conducted in the 4-8 GHz band, where traditional radio interferometers are typically most sensitive. Hence, the nature of UCD radio emission at low frequencies ($lesssim 1.4,mathrm{GHz}$) remains relatively unexplored, but can probe optically thick emission, and regions of lower magnetic field strengths -- regimes not accessible to higher-frequency observations. In this work, we present the results from Giant Metrewave Radio Telescope observations of nine UCDs taken at $sim 610$ and $1300,mathrm{MHz}$. These are the first observations of UCDs in this frequency range to be published in the literature. Using these observations, we are able to constrain the coronal magnetic field strength and electron number density of one of the targets to $1 lesssim B lesssim 90,mathrm{G}$ and $4 lesssim log(N_e) lesssim 10$, respectively. We do not detect the flaring emission observed at higher frequencies, to a limit of a few millijanskys. These results show that some UCDs can produce low-frequency radio emission, and highlights the need for simultaneous multi-wavelength radio observations to tightly constrain the coronal and magnetospheric properties of these stars.
Observations of brown dwarfs provide important feedback on theories of atmospheres and inner structure of substellar objects. Brown dwarf binary systems furthermore offer the unique opportunity to determine the mass of individual brown dwarfs, which is one of the fundamental astrophysical quantities.
The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations pro vide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.
The ultra-long period Cepheids (ULPCs) are classical Cepheids with pulsation periods exceeding $approx 80$ days. The intrinsic brightness of ULPCs are ~1 to ~3 mag brighter than their shorter period counterparts. This makes them attractive in future distance scale work to derive distances beyond the limit set by the shorter period Cepheids. We have initiated a program to search for ULPCs in M31, using the single-band data taken from the Palomar Transient Factory, and identified eight possible candidates. In this work, we presented the VI-band follow-up observations of these eight candidates. Based on our VI-band light curves of these candidates and their locations in the color-magnitude diagram and the Period-Wesenheit diagram, we verify two candidates as being truly ULPCs. The six other candidates are most likely other kinds of long-period variables. With the two confirmed M31 ULPCs, we tested the applicability of ULPCs in distance scale work by deriving the distance modulus of M31. It was found to be $mu_{M31,ULPC}=24.30pm0.76$ mag. The large error in the derived distance modulus, together with the large intrinsic dispersion of the Period-Wesenheit (PW) relation and the small number of ULPCs in a given host galaxy, means that the question of the suitability of ULPCs as standard candles is still open. Further work is needed to enlarge the sample of calibrating ULPCs and reduce the intrinsic dispersion of the PW relation before re-considering ULPCs as suitable distance indicators.
264 - C. Lynch , R. L. Mutel , M. Gudel 2014
A number of radio-loud ultra cool dwarf stars (UCD) exhibit both continuous broadband and highly polarized pulsed radio emission. In order to determine the nature of the emission and the physical characteristics in the source region, we have made mul ti-epoch, wideband spectral observations of TVLM 0513-46 and 2M 0746+20. We combine these observations with archival radio data to fully characterize both the temporal and spectral properties of the radio emission. The continuum spectral energy distribution can be well modeled using gyrosynchrotron emission from mildly relativistic electrons in a dipolar field. The pulsed emission exhibits a variety of time-variable characteristics, including frequency drifts, frequency cutoffs, and multiple pulses per period. For 2M 0746+20 we determine a pulse period consistent with previously determined values. We modeled locations of pulsed emission using an oblique rotating magnetospheric model with beamed electron cyclotron maser (ECM) sources. The best-fit models have narrow ECM beaming angles aligned with the local source magnetic field direction, except for one isolated burst from 2M 0746+20. For TVLM 0513-46, the best-fit rotation axis inclination is nearly orthogonal to the line of sight. For 2M 0746+20 we found a good fit using a fixed inclination i=36 deg, determined from optical observations. For both stars the ECM sources are located near feet of magnetic loops with radial extents 1.2Rs-2.7 Rs and surface fields 2.2 - 2.5 kG. These results support recent suggestions that radio over-luminous UCDs have a global `weak field non-axisymmetric magnetic topologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا