ترغب بنشر مسار تعليمي؟ اضغط هنا

GRAVITY: getting to the event horizon of Sgr A*

128   0   0.0 ( 0 )
 نشر من قبل Frank Eisenhauer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the second-generation VLTI instrument GRAVITY, which currently is in the preliminary design phase. GRAVITY is specifically designed to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We have identified the key design features needed to achieve this goal and present the resulting instrument concept. It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near infrared wavefront sensing adaptive optics; fringe tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that the planned design matches the scientific needs; in particular that 10 microarcsecond astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given the availability of suitable phase reference sources.

قيم البحث

اقرأ أيضاً

We study the time-variable linear polarisation of Sgr A* during a bright NIR flare observed with the GRAVITY instrument on July 28, 2018. Motivated by the time evolution of both the observed astrometric and polarimetric signatures, we interpret the d ata in terms of the polarised emission of a compact region (hotspot) orbiting a black hole in a fixed, background magnetic field geometry. We calculated a grid of general relativistic ray-tracing models, created mock observations by simulating the instrumental response, and compared predicted polarimetric quantities directly to the measurements. We take into account an improved instrument calibration that now includes the instruments response as a function of time, and we explore a variety of idealised magnetic field configurations. We find that the linear polarisation angle rotates during the flare, which is consistent with previous results. The hotspot model can explain the observed evolution of the linear polarisation. In order to match the astrometric period of this flare, the near horizon magnetic field is required to have a significant poloidal component, which is associated with strong and dynamically important fields. The observed linear polarisation fraction of $simeq 30%$ is smaller than the one predicted by our model ($simeq 50%$). The emission is likely beam depolarised, indicating that the flaring emission region resolves the magnetic field structure close to the black hole.
Millimeter polarimetry of Sgr A* probes the linearly polarized emission region on a scale of $sim 10$ Schwarzschild radii ($R_S$) as well as the dense, magnetized accretion flow on scales out to the Bondi radius ($sim 10^5 R_S$) through Faraday rotat ion. We present here multi-epoch ALMA Band 6 (230 GHz) polarimetry of Sgr A*. The results confirm a mean rotation measure, ${rm RM} approx -5 times 10^5 {rm rad m^{-2}}$, consistent with measurements over the past 20 years and support an interpretation of the RM as originating from a radiatively inefficient accretion flow (RIAF) with $dot{M} approx 10^{-8} { rm M_{odot} y^{-1} }$. Variability is observed for the first time in the RM on time scales that range from hours to months. The long-term variations may be the result of changes in the line of sight properties in a turbulent accretion flow. Short-term variations in the apparent RM are not necessarily the result of Faraday rotation and may be the result of complex emission and propagatation effects close to the black hole, some of which have been predicted in numerical modeling. We also confirm the detection of circular polarization at a mean value of $-1.1 pm 0.2 %$. It is variable in amplitude on time scales from hours to months but the handedness remains unchanged from that observed in past centimeter- and millimeter-wavelength detections. These results provide critical constraints for the analysis and interpretation of Event Horizon Telescope data of Sgr A*, M87, and similar sources.
Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly . Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
Very-long-baseline interferometry (VLBI) at frequencies above 230 GHz with Earth-diameter baselines gives spatial resolution finer than the ${sim}50 mu$as shadow of the supermassive black hole at the Galactic Center, Sagittarius A* (Sgr A*). Imaging static and dynamical structure near the shadow provides a test of general relativity and may allow measurement of black hole parameters. However, traditional Earth-rotation synthesis is inapplicable for sources (such as Sgr A*) with intra-day variability. Expansions of ground-based arrays to include space-VLBI stations may enable imaging capability on time scales comparable to the prograde innermost stable circular orbit (ISCO) of Sgr A*, which is predicted to be 4-30 minutes, depending on black hole spin. We examine the basic requirements for space-VLBI, and we develop tools for simulating observations with orbiting stations. We also develop a metric to quantify the imaging capabilities of an array irrespective of detailed image morphology or reconstruction method. We validate this metric on example reconstructions of simulations of Sgr A* at 230 and 345 GHz, and use these results to motivate expanding the Event Horizon Telescope (EHT) to include small dishes in Low Earth Orbit (LEO). We demonstrate that high-sensitivity sites such as the Atacama Large Millimeter/Submillimeter Array (ALMA) make it viable to add small orbiters to existing ground arrays, as space-ALMA baselines would have sensitivity comparable to ground-based non-ALMA baselines. We show that LEO-enhanced arrays sample half of the diffraction-limited Fourier plane of Sgr A* in less than 30 minutes, enabling reconstructions of near-horizon structure with normalized root-mean-square error $lesssim0.3$ on sub-ISCO timescales.
The black hole in the center of the Milky Way, Sgr A*, has the largest mass-to-distance ratio among all known black holes in the Universe. This property makes Sgr A* the optimal target for testing the gravitational no-hair theorem. In the near future , major developments in instrumentation will provide the tools for high-precision studies of its spacetime via observations of relativistic effects in stellar orbits, in the timing of pulsars, and in horizon-scale images of its accretion flow. We explore here the prospect of measuring the properties of the black-hole spacetime using all these three types of observations. We show that the correlated uncertainties in the measurements of the black-hole spin and quadrupole moment using the orbits of stars and pulsars are nearly orthogonal to those obtained from measuring the shape and size of the shadow the black hole casts on the surrounding emission. Combining these three types of observations will, therefore, allow us to assess and quantify systematic biases and uncertainties in each measurement and lead to a highly accurate, quantitative test of the gravitational no-hair theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا