ترغب بنشر مسار تعليمي؟ اضغط هنا

223 - W. Feng , P. Yang , B. K. Yuan 2021
The Kondo effect typically arises from the spin-flip scattering between the localized magnetic moment of the impurity and the delocalized electrons in the metallic host, which leads to a variety of intriguing phenomena. Here, by using scanning tunnel ling microscopy/spectroscopy (STM/STS), we present the Kondo effect and subatomic features of single U adatom on graphene/6H-SiC(0001). A dip spectral feature can be observed around the Fermi energy, which is termed as the fingerprint of the Kondo resonance in STS; in addition, two subatomic features with different symmetries: a three-lobe structure and a donghnut-like structure can be observed from the dI/dV maps. The Kondo resonance is only detectable within 5~AA~of the lateral distance from the U atom center, which is much smaller than the distances observed in Co atoms on different surfaces, indicating the more localized 5$f$ states than 3$d$ orbitals. By comparing with density functional theory calculations, we find that the two subatomic features displaying different symmetries originate from the selective hybridization between U 6$d$, 5$f$ orbitals and the $p_z$ orbitals from two inequivalent C atoms of the multilayer graphene.
Continuous, ubiquitous monitoring through wearable sensors has the potential to collect useful information about users context. Heart rate is an important physiologic measure used in a wide variety of applications, such as fitness tracking and health monitoring. However, wearable sensors that monitor heart rate, such as smartwatches and electrocardiogram (ECG) patches, can have gaps in their data streams because of technical issues (e.g., bad wireless channels, battery depletion, etc.) or user-related reasons (e.g. motion artifacts, user compliance, etc.). The ability to use other available sensor data (e.g., smartphone data) to estimate missing heart rate readings is useful to cope with any such gaps, thus improving data quality and continuity. In this paper, we test the feasibility of estimating raw heart rate using smartphone sensor data. Using data generated by 12 participants in a one-week study period, we were able to build both personalized and generalized models using regression, SVM, and random forest algorithms. All three algorithms outperformed the baseline moving-average interpolation method for both personalized and generalized settings. Moreover, our findings suggest that personalized models outperformed the generalized models, which speaks to the importance of considering personal physiology, behavior, and life style in the estimation of heart rate. The promising results provide preliminary evidence of the feasibility of combining smartphone sensor data with wearable sensor data for continuous heart rate monitoring.
216 - Kejun Li , W. Feng 2019
Over 54 years of hourly mean value of solar wind velocity from 27 Nov. 1963 to 31 Dec. 2017 are used to investigate characteristics of the rotation period of solar wind through auto-correlation analysis. Solar wind of high velocity is found to rotate faster than low-velocity wind, while its rotation rate increases with velocity increasing, but in contrast for solar wind of low velocity, its rotation rate decreases with velocity increasing. Our analysis shows that solar wind of a higher velocity statistically possesses a faster rotation rate for the entire solar wind. The yearly rotation rate of solar wind velocity does not follow the Schwable cycle, but it is significantly negatively correlated to yearly sunspot number when it leads by 3 years. Physical explanations are proposed to these findings.
150 - K.J. Li , J.C. Xu , W. Feng 2018
Solar chromosphere and coronal heating is a big question for astrophysics. Daily measurement of 985 solar spectral irradiances (SSIs) at the spectral intervals 1-39 nm and 116-2416 nm during March 1 2003 to October 28 2017 is utilized to investigate phase relation respectively with daily sunspot number, the Mount Wilson Sunspot Index, and the Magnetic Plage Strength Index. All SSIs which form in the whole heated region: the upper photosphere, chromosphere, transition region, and corona are found to be significantly more correlated to weak magnetic activity than to strong magnetic activity, and to dance in step with weak magnetic activity. All SSIs which form in the low photosphere (the unheated region), which indicate the energy leaked from the solar subsurface are found to be more related to strong magnetic activity instead and in anti-phase with weak magnetic activity. In the upper photosphere and chromosphere, strong magnetic activity should lead SSI by about a solar rotation, also displaying that weak magnetic activity should take effect on heating there. It is thus small-scale weak magnetic activity that effectively heats the upper solar atmosphere.
96 - Y. Zhang , W. Feng , X. Lou 2018
The electronic structure of the Kondo lattice CeIn3 has been studied by on-resonant angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. A weakly dispersive quasiparticle band has been observed directly with an en ergy dispersion of 4 meV by photoemission, implying the existence of weak hybridization between the f electrons and conduction electrons. The hybridization is further confirmed by the formation of the hybridization gap revealed by temperature-dependent scanning tunneling spectroscopy. Moreover, we find the hybridization strength in CeIn3 is much weaker than that in the more two-dimensional compounds CeCoIn5 and CeIrIn5. Our results may be essential for the complete microscopic understanding of this important compound and the related heavy-fermion systems.
Single photon emitters are indispensable to photonic quantum technologies. Here we demonstrate waveform-controlled high-purity single photons from room-temperature colloidal quantum dots. The purity of the single photons does not vary with the excita tion power, thereby allowing the generation rate to be increased without compromising the single-photon quality.
183 - N.H. Chieu , J.W. Feng , W. Gao 2017
In this paper, we introduce a new class of nonsmooth convex functions called SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex polynomials. This class of nonsmooth convex functions covers many common nonsmooth fu nctions arising in the applications such as the Euclidean norm, the maximum eigenvalue function and the least squares functions with $ell_1$-regularization or elastic net regularization used in statistics and compressed sensing. We show that, under commonly used strict feasibility conditions, the optimal value and an optimal solution of SOS-convex semi-algebraic programs can be found by solving a single semi-definite programming problem (SDP). We achieve the results by using tools from semi-algebraic geometry, convex-concave minimax theorem and a recently established Jensen inequality type result for SOS-convex polynomials. As an application, we outline how the derived results can be applied to show that robust SOS-convex optimization problems under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty and answers the open questions left in [Optimization Letters 9, 1-18(2015)] on how to recover a robust solution from the semi-definite programming relaxation in this broader setting.
206 - K. J. Li , W. Feng , J. C. Xu 2012
In order to probe the mechanism of variations of the Solar Constant on the inter-solar-cycle scale, total solar irradiance (TSI, the so-called Solar Constant) in the time interval of 7 November 1978 to 20 September 2010 is decomposed into three compo nents through the empirical mode decomposition and time-frequency analyses. The first component is the rotation signal, counting up to 42.31% of the total variation of TSI, which is understood to be mainly caused by large magnetic structures, including sunspot groups. The second is an annual-variation signal, counting up to 15.17% of the total variation, the origin of which is not known at this point in time. Finally, the third is the inter-solar-cycle signal, counting up to 42.52%, which are inferred to be caused by the network magnetic elements in quiet regions, whose magnetic flux ranges from $(4.27-38.01)times10^{19}$ Mx.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا