ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - G. Rastelli , W. Belzig 2019
We discuss two theoretical proposals for controlling the nonequilibrium steady state of nanomechanical resonators using quantum electronic transport. Specifically?, we analyse two approaches to achieve the ground-state cooling of the mechanical vibra tion coupled to a quantum dot embedded between (i) spin-polarised contacts or (ii) a normal metal and a superconducting contact. Assuming a suitable coupling between the vibrational modes and the charge or spin of the electrons in the quantum dot, we show that ground-state cooling of the mechanical oscillator is within the state of the art for suspended carbon nanotube quantum dots operating as electromechanical devices.
Boundary conditions in quasiclassical theory of superconductivity are of crucial importance for describing proximity effects in heterostructures between different materials. Although they have been derived for the ballistic case in full generality, c orresponding boundary conditions for the diffusive limit, described by Usadel theory, have been lacking for interfaces involving strongly spin-polarized materials, such as e.g. half-metallic ferromagnets. Given the current intense research in the emerging field of superconducting spintronics, the formulation of appropriate boundary conditions for the Usadel theory of diffusive superconductors in contact with strongly spin-polarized ferromagnets for arbitrary transmission probability and arbitrary spin-dependent interface scattering phases has been a burning open question. Here we close this gap and derive the full boundary conditions for quasiclassical Green functions in the diffusive limit, valid for any value of spin polarization, transmission probability, and spin mixing angles (spin-dependent scattering phase shifts). It allows also for complex spin textures across the interface and for channel off-diagonal scattering (a necessary ingredient when the numbers of channels on the two sides of the interface differ). As an example we derive expressions for the proximity effect in diffusive systems involving half-metallic ferromagnets. In a superconductor/half-metal/superconductor Josephson junction we find $phi_0$ junction behavior under certain interface conditions.
98 - P.Machon , M. Eschrig , W. Belzig 2014
The usually negligibly small thermoelectric effects in superconducting heterostructures can be boosted dramatically due to the simultaneous effect of spin splitting and spin filtering. Building on an idea of our earlier work [Phys. Rev. Lett. $textbf {110}$, 047002 (2013)], we propose realistic mesoscopic setups to observe thermoelectric effects in superconductor heterostructures with ferromagnetic interfaces or terminals. We focus on the Seebeck effect being a direct measure of the local thermoelectric response and find that a thermopower of the order of $sim200$ $mu V/K$ can be achieved in a transistor-like structure, in which a third terminal allows to drain the thermal current. A measurement of the thermopower can furthermore be used to determine quantitatively the spin-dependent interface parameters that induce the spin splitting. For applications in nanoscale cooling we discuss the figure of merit for which we find enormous values exceeding 1 for temperature $lesssim 1$K.
41 - M. Bruderer , W. Belzig 2011
We study transport of fermions in a system composed of a short optical lattice connecting two finite atomic reservoirs at different filling levels. The average equilibration current through the optical lattice, for strong lattice-reservoir coupling a nd finite temperatures, is calculated within the Landauer formalism using a nonequilibrium Greens functions approach. We moreover determine quantum and thermal fluctuations in the transport and find significant shot-to-shot deviations from the average equilibration current. We show how to control the atomic current by engineering specific optical lattice potentials without requiring site-by-site manipulations and suggest the realization of a single level model. Based on this model we discuss the blocking effect on the atomic current resulting from weak interactions between the fermions.
We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for $Rsim d$ the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for $Rgg d$, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility $4pichi$ becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer.
We consider a single-electron transistor (SET) whose central island is a nanomechanical oscillator. The gate capacitance of the SET depends on the mechanical displacement, thus, the vibrations of the island vibrations may strongly influence the curre nt-voltage characteristics, current noise, and higher cumulants of the current. Harmonic oscillations of the island and oscillations with random amplitude (e.g., due to the thermal activation) change the transport characteristics in a different way. The noise spectrum has a peak at the frequency of the island oscillations; when the island oscillates harmonically, the peak reduces to a $delta$-peak. We show that knowledge of the SET transport properties helps to determine in what way the island oscillates, to estimate the amplitude, and the frequency of the oscillations.
128 - S. Pilgram , W. Belzig , 1999
We calculate the local density of states (LDOS) of a superconductor-normal metal sandwich at arbitrary impurity concentration. The presence of the superconductor induces a gap in the normal metal spectrum that is proportional to the inverse of the el astic mean free path $l$ for rather clean systems. For a mean free path much shorter than the thickness of the normal metal, we find a gap size proportional to $l$ that approaches the behavior predicted by the Usadel equation (diffusive limit).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا