ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge transport through a SET with a mechanically oscillating island

42   0   0.0 ( 0 )
 نشر من قبل Christoph Bruder
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a single-electron transistor (SET) whose central island is a nanomechanical oscillator. The gate capacitance of the SET depends on the mechanical displacement, thus, the vibrations of the island vibrations may strongly influence the current-voltage characteristics, current noise, and higher cumulants of the current. Harmonic oscillations of the island and oscillations with random amplitude (e.g., due to the thermal activation) change the transport characteristics in a different way. The noise spectrum has a peak at the frequency of the island oscillations; when the island oscillates harmonically, the peak reduces to a $delta$-peak. We show that knowledge of the SET transport properties helps to determine in what way the island oscillates, to estimate the amplitude, and the frequency of the oscillations.



قيم البحث

اقرأ أيضاً

Majorana zero modes are leading candidates for topological quantum computation due to non-local qubit encoding and non-abelian exchange statistics. Spatially separated Majorana modes are expected to allow phase-coherent single-electron transport thro ugh a topological superconducting island via a mechanism referred to as teleportation. Here we experimentally investigate such a system by patterning an elongated epitaxial InAs-Al island embedded in an Aharonov-Bohm interferometer. With increasing parallel magnetic field, a discrete sub-gap state in the island is lowered to zero energy yielding persistent 1e-periodic Coulomb blockade conductance peaks (e is the elementary charge). In this condition, conductance through the interferometer is observed to oscillate in a perpendicular magnetic field with a flux period of h/e (h is Plancks constant), indicating coherent transport of single electrons through the islands, a signature of electron teleportation via Majorana modes, could also be observed, suggesting additional non-Majorana mechanisms for 1e transport through these moderately short wires.
We report direct detection of charge-tunneling between a quantum dot and a superconducting island through radio-frequency gate sensing. We are able to resolve spin-dependent quasiparticle tunneling as well as two-particle tunneling involving Cooper p airs. The quantum dot can act as an RF-only sensor to characterize the superconductor addition spectrum, enabling us to access subgap states without transport. Our results provide guidance for future dispersive parity measurements of Majorana modes, which can be realized by detecting the parity-dependent tunneling between dots and islands.
In the presence of Rashba spin-orbit coupling, magnetic field can drive a proximitized nanowire into a topological superconducting phase. We study transport properties of such nanowires in the Coulomb blockade regime. The associated with the topologi cal superconductivity Majorana modes significantly modify transport and lead to single-electron coherent transmission through the nanowire - a non-local signature of topological superconductivity. In this work, we focus on the case of strong hybridization of the Majorana modes with the normal leads. The induced by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients, the geometric capacitance of and the induced superconducting gap in the nanowire.
We present a method to measure the critical temperature of the island of a superconducting single electron transistor. The method is based on a sharp change in the slope of the zero-bias conductance as a function of temperature. We have used this met hod to determine the superconducting phase transition temperature of the Nb island of an superconducting single electron transistor with Al leads. We obtain $T_mathrm{c}^mathrm{Nb}$ as high as 8.5 K and gap energies up to $Delta_mathrm{Nb}simeq 1.45$ meV. By looking at the zero bias conductance as a function of magnetic field instead of temperature, also the critical field of the island can be determined. Using the orthodox theory, we have performed extensive numerical simulations of charge transport properties in the SET at temperatures comparable to the gap, which match very well the data, therefore providing a solid theoretical basis for our method.
We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to f irst localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا