ترغب بنشر مسار تعليمي؟ اضغط هنا

The possibility of discriminating the statistics of a thermal bath using indirect measurements performed on quantum probes is presented. The scheme relies on the fact that, when weakly coupled with the environment of interest, the transient evolution of the probe toward its final thermal configuration, is strongly affected by the fermionic or bosonic nature of the bath excitations. Using figures of merit taken from quantum metrology such as the Holevo-Helstrom probability of error and the Quantum Chernoff bound, we discuss how to achieve the greatest precision in this statistics tagging procedure, analyzing different models of probes and different initial preparations and by optimizing over the time of exposure of the probe.
In a recent work [D. K. Burgarth et al., Nat. Commun. 5, 5173 (2014)] it was shown that a series of frequent measurements can project the dynamics of a quantum system onto a subspace in which the dynamics can be more complex. In this subspace even fu ll controllability can be achieved, although the controllability over the system before the projection is very poor since the control Hamiltonians commute with each other. We can also think of the opposite: any Hamiltonians of a quantum system, which are in general noncommutative with each other, can be made commutative by embedding them in an extended Hilbert space, and thus the dynamics in the extended space becomes trivial and simple. This idea of making noncommutative Hamiltonians commutative is called Hamiltonian purification. The original noncommutative Hamiltonians are recovered by projecting the system back onto the original Hilbert space through frequent measurements. Here we generalize this idea to open-system dynamics by presenting a simple construction to make Lindbladians, as well as Hamiltonians, commutative on a larger space with an auxiliary system. We show that the original dynamics can be recovered through frequently measuring the auxiliary system in a non-selective way. Moreover, we provide a universal pair of Lindbladians which describes an accessible open quantum system for generic system sizes. This allows us to conclude that through a series of frequent non-selective measurements a nonaccessible open quantum system generally becomes accessible. This sheds further light on the role of measurement backaction on the control of quantum systems.
An all-optical scheme for simulating non-Markovian evolution of a quantum system is proposed. It uses only linear optics elements and by controlling the system parameters allows one to control the presence or absence of information backflow from the environment. A sufficient and necessary condition for the non-Markovianity of our channel based on Gaussian inputs is proved. Various criteria for detecting non-Markovianity are also investigated by checking the dynamical evolution of the channel.
A connection is estabilished between the non-Abelian phases obtained via adiabatic driving and those acquired via a quantum Zeno dynamics induced by repeated projective measurements. In comparison to the adiabatic case, the Zeno dynamics is shown to be more flexible in tuning the system evolution, which paves the way to the implementation of unitary quantum gates and applications in quantum control.
Spin chains have long been considered as candidates for quantum channels to facilitate quantum communication. We consider the transfer of a single excitation along a spin-1/2 chain governed by Heisenberg-type interactions. We build on the work of Bal achandran and Gong [1], and show that by applying optimal control to an external parabolic magnetic field, one can drastically increase the propagation rate by two orders of magnitude. In particular, we show that the theoretical maximum propagation rate can be reached, where the propagation of the excitation takes the form of a dispersed wave. We conclude that optimal control is not only a useful tool for experimental application, but also for theoretical enquiry into the physical limits and dynamics of many-body quantum systems.
We propose a new architecture for implementing electronic interferometry in quantum Hall bars. It exploits scattering among parallel edge channels. In contrast to previous developments, this one employs a simply-connected mesa admitting serial concat enation of building elements closer to optical analogues. Implementations of Mach-Zehnder and Hambury-Brown-Twiss interferometers are discussed together with new structures yet unexplored in quantum electronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا