ﻻ يوجد ملخص باللغة العربية
We propose a new architecture for implementing electronic interferometry in quantum Hall bars. It exploits scattering among parallel edge channels. In contrast to previous developments, this one employs a simply-connected mesa admitting serial concatenation of building elements closer to optical analogues. Implementations of Mach-Zehnder and Hambury-Brown-Twiss interferometers are discussed together with new structures yet unexplored in quantum electronics.
This thesis reports advances in the theory of design, characterization and simulation of multi-photon multi-channel interferometers. I advance the design of interferometers through an algorithm to realize an arbitrary discrete unitary transformation
Exciton-polaritons are hybrid elementary excitations of light and matter that, thanks to their nonlinear properties, enable a plethora of physical phenomena ranging from room temperature condensation to superfluidity. While polaritons are usually exp
We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots and the other is used for charge sensing. The quantum dot transport channel can support e
Recent advances in quantum error correction (QEC) codes for fault-tolerant quantum computing cite{Terhal2015} and physical realizations of high-fidelity qubits in a broad range of platforms cite{Kok2007, Brown2011, Barends2014, Waldherr2014, Dolde201
Symmetry and topology play key roles in the identification of phases of matter and their properties. Both concepts are central to understanding quantum Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously broken spin or pse