ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Abelian Phases from a Quantum Zeno Dynamics

170   0   0.0 ( 0 )
 نشر من قبل Paolo Facchi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A connection is estabilished between the non-Abelian phases obtained via adiabatic driving and those acquired via a quantum Zeno dynamics induced by repeated projective measurements. In comparison to the adiabatic case, the Zeno dynamics is shown to be more flexible in tuning the system evolution, which paves the way to the implementation of unitary quantum gates and applications in quantum control.



قيم البحث

اقرأ أيضاً

We consider the evolution of an arbitrary quantum dynamical semigroup of a finite-dimensional quantum system under frequent kicks, where each kick is a generic quantum operation. We develop a generalization of the Baker-Campbell-Hausdorff formula all owing to reformulate such pulsed dynamics as a continuous one. This reveals an adiabatic evolution. We obtain a general type of quantum Zeno dynamics, which unifies all known manifestations in the literature as well as describing new types.
We show how engineered classical noise can be used to generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect. After discussing the general theoretical framework, we focus on applications in the context of lattice gauge theories, where imposing exotic, quasi-local constraints is usually challenging. We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering dissipative constraints substitutes complicated, non-local interaction patterns by global coupling to laser fields.
We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evol ution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal.
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show that, in the Zeno limit of large dissipation, the density matrix of the system traced over the dissipative subspace ${cal H}_0$, evolves according to another Lindblad dynamics, with renormalized effective Hamiltonian and weak effective dissipation. This behavior is explicitly checked in the case of Heisenberg spin chains with one or both boundary spins strongly coupled to a magnetic reservoir. Moreover, the populations of the eigenstates of the renormalized effective Hamiltonian evolve in time according to a classical Markov dynamics. As a direct application of this result, we propose a computationally-efficient exact method to evaluate the nonequilibrium steady state of a general system in the limit of strong dissipation.
If unitary evolution of a quantum system is interrupted by a sequence of measurements we call the dynamics as quantum Zeno dynamics. We show that under quantum Zeno dynamics not only the transition probability (leading to quantum Zeno effect) but als o phases are affected. We call this new effect as quantum Zeno phase effect (QZPE) which says that under repeated measurements the geometric phase of a quantum system can be inhibited. Since geometric phase attributes a memory to a quatum system this result also proves that under quantum Zeno dynamics the memory of a system can be erased. We have proposed a neutron interference experiment where this prediction can be tested. We also beleive that with Itanos kind of set up for two-level systems this prediction can be tested. This will provide a new way of controlling phase shift in interference experiment by doing repeated measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا