ترغب بنشر مسار تعليمي؟ اضغط هنا

84 - Paul Goudfrooij 2014
We present color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1 - 2 Gyr old) star clusters in the Magellanic Clouds, including 8 clusters for which new data was obtained. We find t hat ${it all}$ star clusters in our sample feature extended main sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate dynamical evolution of clusters with and without initial mass segregation. Our main results are: (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages $leq 1.35$ Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity $v_{rm esc}$, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; (3) we find that $v_{rm esc} geq 15$ km/s out to ages of at least 100 Myr for ${it all}$ clusters featuring eMSTOs, while $v_{rm esc} leq 12$ km/s at all ages for two lower-mass clusters in the same age range that do ${it not}$ show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km/s is consistent with wind velocities of intermediate-mass AGB stars in the literature.
NGC1846 and NGC1783 are two massive star clusters in the Large Magellanic Cloud, hosting both an extended main sequence turn-off and a dual clump of red giants. They present similar masses but differ mainly in angular size. Starting from their high-q uality ACS data in the F435W, F555W and F814W filters, and updated sets of stellar evolutionary tracks, we derive their star formation rates as a function of age, SFR(t), by means of the classical method of CMD reconstruction which is usually applied to nearby galaxies. The method confirms the extended periods of star formation derived from previous analysis of the same data. When the analysis is performed for a finer resolution in age, we find clear evidence for a 50-Myr long hiatus between the oldest peak in the SFR(t), and a second prolonged period of star formation, in both clusters. For the more compact cluster NGC1846, there seems to be no significant difference between the SFR(t) in the cluster centre and in an annulus with radii between 20 and 60 arcsec (from 4.8 to 15.4 pc). The same does not occur in the more extended NGC1783 cluster, where the outer ring (between 33 and 107 arcsec, from 8.0 to 25.9 pc) is found to be slightly younger than the centre. We also explore the best-fitting slope of the present-day mass function and binary fraction for the different cluster regions, finding hints of a varying mass function between centre and outer ring in NGC1783. These findings are discussed within the present scenarios for the formation of clusters with multiple turn-offs.
The HST/ACS colour-magnitude diagrams (CMD) of the populous LMC star cluster NGC1751 present both a broad main sequence turn-off and a dual clump of red giants. We show that the latter feature is real and associate it to the first appearance of elect ron-degeneracy in the H-exhausted cores of the cluster stars. We then apply to the NGC1751 data the classical method of star formation history (SFH) recovery via CMD reconstruction, for different radii corresponding to the cluster centre, the cluster outskirts, and the underlying LMC field. The mean SFH derived from the LMC field is taken into account during the stage of SFH-recovery in the cluster regions, in a novel approach which is shown to significantly improve the quality of the SFH results. For the cluster centre, we find a best-fitting solution corresponding to prolonged star formation for a for a timespan of 460 Myr, instead of the two peaks separated by 200 Myr favoured by a previous work based on isochrone fitting. Remarkably, our global best-fitting solution provides an excellent fit to the data - with chi^2 and residuals close to the theoretical minimum - reproducing all the CMD features including the dual red clump. The results for a larger ring region around the centre indicate even longer star formation, but in this case the results are of lower quality, probably because of the differential extinction detected in the area. Therefore, the presence of age gradients in NGC1751 could not be probed. Together with our previous findings for the SMC cluster NGC419, the present results for the NGC1751 centre argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1.5 Gyr.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا