ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Main Sequence Turnoffs in Intermediate-Age Star Clusters: A Correlation Between Turnoff Width and Early Escape Velocity

127   0   0.0 ( 0 )
 نشر من قبل Paul Goudfrooij
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Goudfrooij




اسأل ChatGPT حول البحث

We present color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1 - 2 Gyr old) star clusters in the Magellanic Clouds, including 8 clusters for which new data was obtained. We find that ${it all}$ star clusters in our sample feature extended main sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate dynamical evolution of clusters with and without initial mass segregation. Our main results are: (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages $leq 1.35$ Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity $v_{rm esc}$, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; (3) we find that $v_{rm esc} geq 15$ km/s out to ages of at least 100 Myr for ${it all}$ clusters featuring eMSTOs, while $v_{rm esc} leq 12$ km/s at all ages for two lower-mass clusters in the same age range that do ${it not}$ show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km/s is consistent with wind velocities of intermediate-mass AGB stars in the literature.



قيم البحث

اقرأ أيضاً

We show that the extended main sequence turnoffs seen in intermediate age Large Magellanic Cloud (LMC) clusters, often attributed to age spreads of several hundred Myr, may be easily accounted for by variable stellar rotation in a coeval population. We compute synthetic photometry for grids of rotating stellar evolution models and interpolate them to produce isochrones at a variety of rotation rates and orientations. An extended main sequence turnoff naturally appears in color-magnitude diagrams at ages just under 1 Gyr, peaks in extent between ~1 and 1.5 Gyr, and gradually disappears by around 2 Gyr in age. We then fit our interpolated isochrones by eye to four LMC clusters with very extended main sequence turnoffs: NGC 1783, 1806, 1846, and 1987. In each case, stellar populations with a single age and metallicity can comfortably account for the observed extent of the turnoff region. The new stellar models predict almost no correlation of turnoff color with rotational vsini: the red edge of the turnoff is populated by a combination of slow rotators and edge-on rapid rotators.
134 - Paul Goudfrooij 2015
Recent high-quality photometry of many star clusters in the Magellanic Clouds with ages of 1$,-,$2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several $10^8$ yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by a SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.
88 - Paul Goudfrooij 2018
Extended main sequence turn-offs (eMSTOs) are a common feature in color-magnitude diagrams (CMDs) of young and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs is still debated. The most popular scenarios are extended sta r formation and ranges of stellar rotation rates. Here we study implications of a kink feature in the main sequence (MS) of young star clusters in the Large Magellanic Cloud (LMC). This kink shows up very clearly in new emph{Hubble Space Telescope} observations of the 700-Myr-old cluster NGC 1831, and is located below the region in the CMD where multiple or wide MSes, which are known to occur in young clusters and thought to be due to varying rotation rates, merge together into a single MS. The kink occurs at an initial stellar mass of $1.45 pm 0.02;M_{odot}$; we posit that it represents a lower limit to the mass below which the effects of rotation on the energy output of stars are rendered negligible at the metallicity of these clusters. Evaluating the positions of stars with this initial mass in CMDs of massive LMC star clusters with ages of $sim,$1.7 Gyr that feature wide eMSTOs, we find that such stars are located in a region where the eMSTO is already significantly wider than the MS below it. This strongly suggests that stellar rotation emph{cannot} fully explain the wide extent of eMSTOs in massive intermediate-age clusters in the Magellanic Clouds. A distribution of stellar ages still seems necessary to explain the eMSTO phenomenon.
137 - Paul Goudfrooij , 2017
Extended main sequence turn-off (eMSTO) regions are a common feature in color-magnitude diagrams of young and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in MSTO morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva SYCLIST isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotation velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ~1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased towards an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ~60% and ~40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.
189 - Paul Goudfrooij 2011
We discuss new photometry from high-resolution images of 7 intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. We fit color-magnitude diagrams (CMDs) w ith several different sets of theoretical isochrones, and determine systematic uncertainties for population parameters when derived using any one set of isochrones. The cluster CMDs show several interesting features, including extended main sequence turnoff (MSTO) regions, narrow red giant branches, and clear sequences of unresolved binary stars. We show that the extended MSTOs are not caused by photometric uncertainties, contamination by field stars, or the presence of binary stars. Enhanced helium abundances in a fraction of cluster stars are also ruled out as the reason for the extended MSTOs. Quantitative comparisons with simulations indicate that the MSTO regions are better described by a spread in ages than by a bimodal age distribution, although we can not formally rule out the latter for the three lowest-mass clusters in our sample (which have masses lower than about 3E4 solar masses). This conclusion differs from that of some previous works which suggested that the age distribution in massive clusters in our sample is bimodal. This suggests that any secondary star formation occurred in an extended fashion rather than through short bursts. We discuss these results in the context of the nature of multiple stellar populations in star clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا