ترغب بنشر مسار تعليمي؟ اضغط هنا

Let G be a complex reductive group acting on a finite-dimensional complex vector space H. Let B be a Borel subgroup of G and let T be the associated torus. The Mumford cone is the polyhedral cone generated by the T-weights of the polynomial functions on H which are semi-invariant under the Borel subgroup. In this article, we determine the inequalities of the Mumford cone in the case of the linear representation associated to a quiver and a dimension vector n=(n_x). We give these inequalities in terms of filtered dimension vectors, and we directly adapt Schofields argument to inductively determine the dimension vectors of general subrepresentations in the filtered context. In particular, this gives one further proof of the Horn inequalities for tensor products.
The computation of Kronecker coefficients is a challenging problem with a variety of applications. In this paper we present an approach based on methods from symplectic geometry and residue calculus. We outline a general algorithm for the problem and then illustrate its effectiveness in several interesting examples. Significantly, our algorithm does not only compute individual Kronecker coefficients, but also symbolic formulas that are valid on an entire polyhedral chamber. As a byproduct, we are able to compute several Hilbert series.
These notes are an expanded version of a talk given by the second author. Our main interest is focused on the challenging problem of computing Kronecker coefficients. We decided, at the beginning, to take a very general approach to the problem of stu dying multiplicity functions, and we survey the various aspects of the theory that comes into play, giving a detailed bibliography to orient the reader. Nonetheless the main general theorems involving multiplicities functions (convexity, quasi-polynomial behavior, Jeffrey-Kirwan residues) are stated without proofs. Then, we present in detail our approach to the computational problem, giving explicit formulae, and outlining an algorithm that calculate many interesting examples, some of which appear in the literature also in connection with Hilbert series.
Let $P(b)subset R^d$ be a semi-rational parametric polytope, where $b=(b_j)in R^N$ is a real multi-parameter. We study intermediate sums of polynomial functions $h(x)$ on $P(b)$, $$ S^L (P(b),h)=sum_{y}int_{P(b)cap (y+L)} h(x) mathrm dx, $$ where w e integrate over the intersections of $P(b)$ with the subspaces parallel to a fixed rational subspace $L$ through all lattice points, and sum the integrals. The purely discrete sum is of course a particular case ($L=0$), so $S^0(P(b), 1)$ counts the integer points in the parametric polytopes. The chambers are the open conical subsets of $R^N$ such that the shape of $P(b)$ does not change when $b$ runs over a chamber. We first prove that on every chamber of $R^N$, $S^L (P(b),h)$ is given by a quasi-polynomial function of $bin R^N$. A key point of our paper is an analysis of the interplay between two notions of degree on quasi-polynomials: the usual polynomial degree and a filtration, called the local degree. Then, for a fixed $kleq d$, we consider a particular linear combination of such intermediate weighted sums, which was introduced by Barvinok in order to compute efficiently the $k+1$ highest coefficients of the Ehrhart quasi-polynomial which gives the number of points of a dilated rational polytope. Thus, for each chamber, we obtain a quasi-polynomial function of $b$, which we call Barvinoks patched quasi-polynomial (at codimension level $k$). Finally, for each chamber, we introduce a new quasi-polynomial function of $b$, the cone-by-cone patched quasi-polynomial (at codimension level $k$), defined in a refined way by linear combinations of intermediate generating functions for the cones at vertices of $P(b)$. We prove that both patched quasi-polynomials agree with the discrete weighted sum $bmapsto S^0(P(b),h)$ in the terms corresponding to the $k+1$ highest polynomial degrees.
We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449-1466]. By we ll-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhedral cone. For a given rational subspace L, we integrate a given polynomial function h over all lattice slices of the affine cone s + c parallel to the subspace L and sum up the integrals. We study these intermediate sums by means of the intermediate generating functions $S^L(s+c)(xi)$, and expose the bidegree structure in parameters s and $xi$, which was implicitly used in the algorithms in our papers [Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra, Found. Comput. Math. 12 (2012), 435-469] and [Intermediate sums on polyhedra: Computation and real Ehrhart theory, Mathematika 59 (2013), 1-22]. The bidegree structure is key to a new proof for the Baldoni--Berline--Vergne approximation theorem for discrete generating functions [Local Euler--Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of rational polytopes, Contemp. Math. 452 (2008), 15-33], using the Fourier analysis with respect to the parameter s and a continuity argument. Our study also enables a forthcoming paper, in which we study intermediate sums over multi-parameter families of polytopes.
For a given sequence $mathbf{alpha} = [alpha_1,alpha_2,dots,alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(mathbf{alpha})(t)$ that counts the nonnegative integer solutions of the equation $alpha_1x_1+alpha_2 x_2+c dots+alpha_{N} x_{N}+alpha_{N+1}x_{N+1}=t$, where the right-hand side $t$ is a varying nonnegative integer. It is well-known that $E(mathbf{alpha})(t)$ is a quasi-polynomial function in the variable $t$ of degree $N$. In combinatorial number theory this function is known as Sylvesters denumerant. Our main result is a new algorithm that, for every fixed number $k$, computes in polynomial time the highest $k+1$ coefficients of the quasi-polynomial $E(mathbf{alpha})(t)$ as step polynomials of $t$ (a simpler and more explicit representation). Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for $E(mathbf{alpha})(t)$ and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Our algorithm also uses Barvinoks fundamental fast decomposition of a polyhedral cone into unimodular cones. This paper also presents a simple algorithm to predict the first non-constant coefficient and concludes with a report of several computational experiments using an implementation of our algorithm in LattE integrale. We compare it with various Maple programs for partial or full computation of the denumerant.
Using Szenes formula for multiple Bernoulli series we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also certain multiple zeta values.
We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449--1466]. For a given semi-rational polytope P and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope P parallel to the subspace L and sum up the integrals. We first develop an algorithmic theory of parametric intermediate generating functions. Then we study the Ehrhart theory of these intermediate sums, that is, the dependence of the result as a function of a dilation of the polytope. We provide an algorithm to compute the resulting Ehrhart quasi-polynomials in the form of explicit step polynomials. These formulas are naturally valid for real (not just integer) dilations and thus provide a direct approach to real Ehrhart theory.
This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients o f the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a polynomial function h. Our technique is based on a refinement of an algorithm of A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), pp. 1449--1466] in the unweighted case (i.e., h = 1). In contrast to Barvinoks method, our method is local, obtains an approximation on the level of generating functions, handles the general weighted case, and provides the coefficients in closed form as step polynomials of the dilation. To demonstrate the practicality of our approach we report on computational experiments which show even our simple implementation can compete with state of the art software.
This document is a companion for the Maple program : Discrete series and K-types for U(p,q) available on:http://www.math.jussieu.fr/~vergne We explain an algorithm to compute the multiplicities of an irreducible representation of U(p)x U(q) in a disc rete series of U(p,q). It is based on Blattners formula. We recall the general mathematical background to compute Kostant partition functions via multidimensional residues, and we outline our algorithm. We also point out some properties of the piecewise polynomial functions describing multiplicities based on Paradans results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا