ترغب بنشر مسار تعليمي؟ اضغط هنا

We report theoretical and experimental studies of the longitudinal electron spin and orbital relaxation time of interstitial Li donors in $^{28}$Si. We predict that despite the near-degeneracy of the ground-state manifold the spin relaxation times ar e extremely long for the temperatures below 0.3 K. This prediction is based on a new finding of the chiral symmetry of the donor states, which presists in the presence of random strains and magnetic fields parallel to one of the cubic axes. Experimentally observed kinetics of magnetization reversal at 2.1 K and 4.5 K are in a very close agreement with the theory. To explain these kinetics we introduced a new mechanism of spin decoherence based on a combination of a small off-site displacement of the Li atom and an umklapp phonon process. Both these factors weakly break chiral symmetry and enable the long-term spin relaxation.
111 - S. Knysh , V.N. Smelyanskiy 2008
We study the quantum version of the random $K$-Satisfiability problem in the presence of the external magnetic field $Gamma$ applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and t he saddle-point equation for the order parameter: the distribution $P[h(m)]$ of functions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in $Gamma$ magnetizations $m approx 0$ become relevant in addition to purely classical values of $m approx pm 1$. Self-consistency equations for the order parameter are solved numerically using Quasi Monte Carlo method for K=3. It is shown that for an arbitrarily small $Gamma$ quantum fluctuations destroy the phase transition present in the classical limit $Gamma=0$, replacing it with a smooth crossover transition. The implications of this result with respect to the expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-symmetric solution of the classical random $K$-Satisfiability problem is briefly revisited. It is shown that the phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical exponents.
Dynamics of a system that performs a large fluctuation to a given state is essentially deterministic: the distribution of fluctuational paths peaks sharply at a certain optimal path along which the system is most likely to move. For the general case of a system driven by colored Gaussian noise, we provide a formulation of the variational problem for optimal paths. We also consider the prehistory problem, which makes it possible to analyze the shape of the distribution of fluctuational paths that arrive at a given state. We obtain, and solve in the limiting case, a set of linear equations for the characteristic width of this distribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا