ترغب بنشر مسار تعليمي؟ اضغط هنا

We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large $N_c$ limit and can be solved exactly. The lowest anomalous dimension is s eparated from the remaining, continuous, spectrum by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon states to the two-particle DA $phi_-(omega)$ so that the evolution equation for the latter is the same as for the leading-twist DA $phi_+(omega)$ up to a constant shift in the anomalous dimension. Thus, ``genuine three-particle states that belong to the continuous spectrum effectively decouple from $phi_-(omega)$ to the leading-order accuracy. In turn, the scale dependence of the full three-particle DA turns out to be nontrivial so that the contribution with the lowest anomalous dimension does not become leading at any scale. The results are illustrated on a simple model that can be used in studies of $1/m_b$ corrections to heavy-meson decays in the framework of QCD factorization or light-cone sum rules.
We present the results of a lattice study of the second moment of the light-cone pion distribution amplitude using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to $m_pisim 150 , mathrm {MeV}$. At la ttice spacings between $0.06 , mathrm {fm}$ and $0.08 , mathrm {fm}$ we find for the second Gegenbauer moment the value $a_2 = 0.1364(154)(145)$ at the scale $mu=2 , mathrm {GeV}$ in the $overline{mathrm{MS}}$ scheme, where the first error is statistical including the uncertainty of the chiral extrapolation, and the second error is the estimated uncertainty coming from the nonperturbatively determined renormalization factors.
We update the theoretical framework for the QCD calculation of transition form factors $gamma^*gammatoeta$ and $gamma^*gammatoeta$ at large photon virtualities including full next-to-leading order analysis of perturbative corrections, the charm quark contribution, and taking into account SU(3)-flavor breaking effects and the axial anomaly contributions to the power-suppressed twist-four distribution amplitudes. The numerical analysis of the existing experimental data is performed with these improvements.
We present the results of a lattice study of light-cone distribution amplitudes (DAs) of the nucleon and negative parity nucleon resonances using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to m_pi = 150 MeV. We find that the three valence quarks in the proton share their momentum in the proportion 37% : 31% : 31%, where the larger fraction corresponds to the u-quark that carries proton helicity, and determine the value of the wave function at the origin in position space, which turns out to be small compared to the existing estimates based on QCD sum rules. Higher-order moments are constrained by our data and are all compatible with zero within our uncertainties. We also calculate the normalization constants of the higher-twist DAs that are related to the distribution of quark angular momentum. Furthermore, we use the variational method and customized parity projection operators to study the states with negative parity. In this way we are able to separate the contributions of the two lowest states that, as we argue, possibly correspond to N*(1535) and a mixture of N*(1650) and the pion-nucleon continuum, respectively. It turns out that the state that we identify with N*(1535) has a very different DA as compared to both the second observed negative parity state and the nucleon, which may explain the difference in the decay patterns of N*(1535) and N*(1650) observed in experiment.
We study the electromagnetic nucleon form factors within the approach based on light-cone sum rules. We include the next-to-leading-order corrections for the contributions of twist-three and twist-four operators and a consistent treatment of the nucl eon mass corrections in our calculation. It turns out that a self-consistent picture arises when the three valence quarks carry $40%:30%:30%$ of the proton momentum.
128 - S.S. Agaev , V.M. Braun , N. Offen 2010
We provide a theoretical update of the calculations of the pi0-gamma*-gamma form factor in the LCSR framework, including up to six polynomials in the conformal expansion of the pion distribution amplitude and taking into account twist-six corrections related to the photon emission at large distances. The results are compared with the calculations of the B-> pi l nu decay and pion electromagnetic form factors in the same framework. Our conclusion is that the recent BaBar measurements of the pi0-gamma*-gamma form factor at large momentum transfers are consistent with QCD, although they do suggest that the pion DA may have more structure than usually assumed.
Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present a calculation of the first few moments of the leading-twist nucleon DA within lattice QCD. In addition we deal with the normalization of the next- to-leading (twist-four) DAs. The matrix elements determining the latter quantities are also responsible for proton decay in Grand Unified Theories. Our lattice evaluation makes use of gauge field configurations generated with two flavors of clover fermions. The relevant operators are renormalized nonperturbatively with the final results given in the MSbar scheme. We find that the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes claimed in the literature.
Results are presented for the lowest moment of the distribution amplitude for the K-star vector meson. Both longitudinal and transverse moments are investigated. We use two flavours of O(a) improved Wilson fermions, together with a non-perturbative renormalisation of the matrix element.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا