ﻻ يوجد ملخص باللغة العربية
We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large $N_c$ limit and can be solved exactly. The lowest anomalous dimension is separated from the remaining, continuous, spectrum by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon states to the two-particle DA $phi_-(omega)$ so that the evolution equation for the latter is the same as for the leading-twist DA $phi_+(omega)$ up to a constant shift in the anomalous dimension. Thus, ``genuine three-particle states that belong to the continuous spectrum effectively decouple from $phi_-(omega)$ to the leading-order accuracy. In turn, the scale dependence of the full three-particle DA turns out to be nontrivial so that the contribution with the lowest anomalous dimension does not become leading at any scale. The results are illustrated on a simple model that can be used in studies of $1/m_b$ corrections to heavy-meson decays in the framework of QCD factorization or light-cone sum rules.
The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory, corresponding to a long-distance component in the factorization formula for exclusive B-mes
A new method for the model-independent determination of the light-cone distribution amplitude (LCDA) of the $B$-meson in heavy quark effective theory (HQET) is proposed by combining the large momentum effective theory (LaMET) and the numerical simula
The $B$-meson light-cone distribution amplitude (LCDA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory (HQET) and is a building block of QCD factorization formula for exclusive $B$
Building upon our recent study arXiv:1709.04325, we investigate the feasibility of calculating the pion distribution amplitude from suitably chosen Euclidean correlation functions at large momentum. We demonstrate in this work the advantage of analyz
The partonic structure of hadrons plays an important role in a vast array of high-energy and nuclear physics experiments. It also underpins the theoretical understanding of hadron structure. Recent developments in lattice QCD offer new opportunities