ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition form factors $gamma^*gammatoeta$ and $gamma^*gammatoeta$ in QCD

48   0   0.0 ( 0 )
 نشر من قبل Vladimir Braun M
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We update the theoretical framework for the QCD calculation of transition form factors $gamma^*gammatoeta$ and $gamma^*gammatoeta$ at large photon virtualities including full next-to-leading order analysis of perturbative corrections, the charm quark contribution, and taking into account SU(3)-flavor breaking effects and the axial anomaly contributions to the power-suppressed twist-four distribution amplitudes. The numerical analysis of the existing experimental data is performed with these improvements.

قيم البحث

اقرأ أيضاً

324 - C. Alexandrou 2003
Calculations of the magnetic dipole, electric quadrupole and Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are presented both in quenched QCD and with two flavours of degenerate dynamical quarks.
The form factors of $gamma^* N rightarrow Delta(1600)$ transition is calculated within the light-cone sum rules assuming that $Delta^+(1600)$ is the first radial excitation of $Delta(1232)$. The $Q^2$ dependence of the magnetic dipole $tilde{G}_M(Q^2 )$, electric quadrupole $tilde{G}_E(Q^2)$, and Coulomb quadrupole $tilde{G}_c(Q^2)$ form factors are investigated. Moreover, the $Q^2$ dependence of the ratios $R_{EM} = -frac{tilde{G}_E(Q^2)}{tilde{G}_M{Q^2}}$ and $R_{SM} = - frac{1}{4 m_{Delta(1600)}^2} sqrt{4 m_{Delta(1600)}^2 Q^2 + (m_{Delta(1600)}^2 - Q^2 - m_N^2)^2} frac{tilde{G}_c(Q^2)}{tilde{G}_M(Q^2)}$ are studied. Finally, our predictions on $tilde{G}_M(Q^2)$, $tilde{G}_E(Q^2)$, and $tilde{G}_C(Q^2)$ are compared with the results of other theoretical approaches.
77 - Hui-Young Ryu , 2018
The light-front quark model analysis of the meson-photon transition form factor $F_{Pgamma} (Q^2)$ amenable both for the spacelike region ($Q^2 >0$) and the timelike region ($Q^2 <0$) provides a systematic twist expansion of $Q^2 F_{Pgamma} (Q^2)$ fo r the high $|Q^2|$ region. Investigating $F_{Pgamma} (Q^2) (P = eta_c,eta_b)$ for the entire kinematic regions of $Q^2$, we examine the twist-2 and twist-3 distribution amplitudes of $(eta_c,eta_b)$ mesons in the light-front quark model and quantify their contributions to $Q^2 F_{(eta_c,eta_b)gamma}(Q^2)$. Our numerical results for the normalized transition form factor $F_{(eta_c,eta_b)gamma}(Q^2)/F_{(eta_c,eta_b)gamma}(0)$ and the decay width $Gamma_{(eta_c,eta_b)togammagamma}$ are compared with the available data checking the sensitivity of our model to the variation of the constituent quark masses.
The nucleon electromagnetic form factors are calculated in light cone QCD sum rules framework using the most general form of the nucleon interpolating current. Using two forms of the distribution amplitudes (DAs), predictions for the form factors are presented and compared with existing experimental data. It is shown that our results describe remarkably well the existing experimental data.
We derive light-cone sum rules for the electromagnetic nucleon form factors including the next-to-leading-order corrections for the contribution of twist-three and twist-four operators and a consistent treatment of the nucleon mass corrections. The e ssence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations. A selfconsistent picture emerges, with the three valence quarks carrying 40%:30%:30% of the proton momentum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا