ترغب بنشر مسار تعليمي؟ اضغط هنا

We report an experimental technique to measure and manipulate the arrival-time and energy distributions of electrons emitted from a semiconductor electron pump, operated as both a single-electron source and a two-electron source. Using an energy-sele ctive detector whose transmission we control on picosecond timescales, we can measure directly the electron arrival-time distribution and we determine the upper-bound to the distribution width to be 30 ps. We study the effects of modifying the shape of the voltage waveform that drives the electron pump, and show that our results can be explained by a tunneling model of the emission mechanism. This information was in turn used to control the emission-time difference and energy gap between a pair of electrons.
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blocka de peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theo retical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا