ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge pumping in carbon nanotube quantum dots

123   0   0.0 ( 0 )
 نشر من قبل Mark Buitelaar
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blockade peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.



قيم البحث

اقرأ أيضاً

We demonstrate single-electron pumping in a gate-defined carbon nanotube double quantum dot. By periodic modulation of the potentials of the two quantum dots we move the system around charge triple points and transport exactly one electron or hole pe r cycle. We investigate the pumping as a function of the modulation frequency and amplitude and observe good current quantization up to frequencies of 18 MHz where rectification effects cause the mechanism to break down.
Single electron pumps are set to revolutionize electrical metrology by enabling the ampere to be re-defined in terms of the elementary charge of an electron. Pumps based on lithographically-fixed tunnel barriers in mesoscopic metallic systems and nor mal/superconducting hybrid turnstiles can reach very small error rates, but only at MHz pumping speeds corresponding to small currents of the order 1 pA. Tunable barrier pumps in semiconductor structures have been operated at GHz frequencies, but the theoretical treatment of the error rate is more complex and only approximate predictions are available. Here, we present a monolithic, fixed barrier single electron pump made entirely from graphene. We demonstrate pump operation at frequencies up to 1.4 GHz, and predict the error rate to be as low as 0.01 parts per million at 90 MHz. Combined with the record-high accuracy of the quantum Hall effect and proximity induced Josephson junctions, accurate quantized current generation brings an all-graphene closure of the quantum metrological triangle within reach. Envisaged applications for graphene charge pumps outside quantum metrology include single photon generation via electron-hole recombination in electrostatically doped bilayer graphene reservoirs, and for readout of spin-based graphene qubits in quantum information processing.
The interaction between electrons and the vibrational degrees of freedom of a molecular quantum dot can lead to an exponential suppression of the conductance, an effect which is commonly termed Franck-Condon blockade. Here, we investigate this effect in a quantum dot driven by time-periodic gate voltages and tunneling amplitudes using nonequilibrium Greens functions and a Floquet expansion. Building on previous results showing that driving can lift the Franck-Condon blockade, we investigate driving protocols which can be used to pump charge across the quantum dot. In particular, we show that due to the strongly coupled nature of the system, the pump current at resonance is an exponential function of the drive strength.
70 - C. Volk , S. Engels (1 2015
We report on devices based on graphene charge detectors (CDs) capacitively coupled to graphene and carbon nanotube quantum dots (QDs). We focus on back action effects of the CD on the probed QD. A strong influence of the bias voltage applied to the C D on the current through the QD is observed. Depending on the charge state of the QD the current through the QD can either strongly increase or completely reverse as a response to the applied voltage on the CD. To describe the observed behavior we employ two simple models based on single electron transport in QDs with asymmetrically broadened energy distributions of the source and the drain leads. The models successfully explain the back action effects. The extracted distribution broadening shows a linear dependency on the bias voltage applied to the CD. We discuss possible mechanisms mediating the energy transfer between the CD and QD and give an explanation for the origin of the observed asymmetry.
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quant um dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا