ترغب بنشر مسار تعليمي؟ اضغط هنا

Lorentz symmetry is one of the cornerstones of modern physics. However, a number of theories aiming at unifying gravity with the other fundamental interactions including string field theory suggest violation of Lorentz symmetry [1-4]. While the ene rgy scale of such strongly Lorentz symmetry-violating physics is much higher than that currently attainable by particle accelerators, Lorentz violation may nevertheless be detectable via precision measurements at low energies [2]. Here, we carry out a systematic theoretical investigation of the sensitivity of a wide range of atomic systems to violation of local Lorentz invariance (LLI). Aim of these studies is to identify which atom shows the biggest promise to detect violation of Lorentz symmetry. We identify the Yb+ ion as an ideal system with high sensitivity as well as excellent experimental controllability. By applying quantum information inspired technology to Yb+, we expect tests of LLI violating physics in the electron-photon sector to reach levels of $10^{-23}$, five orders of magnitude more sensitive than the current best bounds [5-7]. Most importantly, the projected sensitivity of $10^{-23}$ for the Yb+ ion tests will allow for the first time to probe whether Lorentz violation is minimally suppressed at low energies for photons and electrons.
We demonstrate that experiments measuring the transition energies of rare-earth ions doped in crystalline lattices are sensitive to violations of Local Lorentz Invariance and Einsteins Equivalence Principle. Using the crystal field of LaCl$_{3}$ as a n example, we calculate the frame-dependent energy shifts of the transition frequencies between low-lying states of Ce$^{3+}$, Nd$^{3+}$, and Er$^{3+}$ dopants in the context of the Standard Model Extension, and show that they have high sensitivity to electron anomalies that break rotational invariance.
We propose to use diatomic molecular ions to search for strongly enhanced effects of variation of fundamental constants. The relative enhancement occurs in transitions between nearly degenerate levels of different nature. Since the trapping technique s for molecular ions have already been developed, the molecules HBr$^+$, HI$^+$, Br$^+_2$, I$^+_2$, IBr$^+$, ICl$^+$, and IF$^+$ are very promising candidates for such future studies.
106 - V. V. Flambaum , D. DeMille , 2014
Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out tha t nuclear T,P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T,P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T,P-odd effects in the molecules TaN, ThO, ThF$^+$, HfF$^+$, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T,P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T,P-odd nuclear forces, on the proton, neutron and quark EDMs, on quark chromo-EDMs, and on the QCD $theta$-term and CP-violating quark interactions.
We discuss possible search for optical transitions in Sm13+ and Sm14+ using ab initio calculations of differential dynamic polarizability. We calculate dynamic polarizability for M1 transition between first and second excited states of Sm14+ . Transi tion amplitudes and energies within optical range for states that contribute to the polarizability of the mentioned transition are presented. Employing simple analytical formula for polarizability data in the vicinity of a resonance and assuming that several values of the polarizability for different laser frequencies will be measured one can find the accurate position of the resonance. Results of similar calculations of amplitudes and energies of states that contribute to the polarizability of the M1 transition between ground and first excited states of Sm13+ are also presented.
We propose a new probe of the dependence of the fine structure constant, alpha, on a strong gravitational field using metal lines in the spectra of white dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white dw arf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits on the fractional variation of alpha of (Delta alpha/alpha)=(4.2 +- 1.6)x10^(-5) and (-6.1 +- 5.8)x10^(-5) from Fe V and Ni V spectra, respectively, at a dimensionless gravitational potential relative to Earth of (Delta phi) ~ 5x10^(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to two orders of magnitude.
The quark mass dependences of light element binding energies and nuclear scattering lengths are derived using chiral perturbation theory in combination with non-perturbative methods. In particular, we present new, improved values for the quark mass d ependence of meson resonances that enter the nuclear force. A detailed analysis of the theoretical uncertainties arising in this determination is presented. As an application we derive from a comparison of observed and calculated primordial deuterium and helium abundances a stringent limit on the variation of the light quark mass, $delta m_q/m_q = 0.02 pm 0.04$. Inclusion of the neutron lifetime modification under the assumption of a variation of the Higgs vacuum expectation value that translates into changing quark, electron, and weak gauge boson masses, leads to a stronger limit, $|delta m_q/m_q| < 0.009$.
Level crossings in the ground state of ions occur when the nuclear charge Z and ion charge Z_ion are varied along an isoelectronic sequence until the two outermost shells are nearly degenerate. We examine all available level crossings in the periodic table for both near neutral ions and highly charged ions (HCIs). Normal E1 transitions in HCIs are in X-ray range, however level crossings allow for optical electromagnetic transitions that could form the reference transition for high accuracy atomic clocks. Optical E1 (due to configuration mixing), M1 and E2 transitions are available in HCIs near level crossings. We present scaling laws for energies and amplitudes that allow us to make simple estimates of systematic effects of relevance to atomic clocks. HCI clocks could have some advantages over existing optical clocks because certain systematic effects are reduced, for example they can have much smaller thermal shifts. Other effects such as fine-structure and hyperfine splitting are much larger in HCIs, which can allow for richer spectra. HCIs are excellent candidates for probing variations in the fine-structure constant, alpha, in atomic systems as there are transitions with the highest sensitivity to alpha-variation.
We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite t he large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest alpha-sensitivity seen in atomic systems. The lines include positive and negative shifters.
In their Letter, Kentosh and Mohageg [Phys. Rev. Lett. 108, 110801 (2012)] seek to use data from clocks aboard global positioning system (GPS) satellites to place limits on local position invariance (LPI) violations of Plancks constant, h. It is the purpose of this comment to show that discussing limits on variation of dimensional constants (such as h) is not meaningful; that even within a correct framework it is not possible to extract limits on variation of fundamental constants from a single type of clock aboard GPS satellites; and to correct an important misconception in the authors interpretation of previous Earth-based LPI experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا