ترغب بنشر مسار تعليمي؟ اضغط هنا

The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely s toring protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte-Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.
To optimise the design of the light readout in the ArDM 1-ton liquid argon dark matter detector, a range of reflector and WLS coating combinations were investigated in several small setups, where argon scintillation light was generated by radioactive sources in gas at normal temperature and pressure and shifted into the blue region by tetraphenyl butadiene (TPB). Various thicknesses of TPB were deposited by spraying and vacuum evaporation onto specular 3M{smalltexttrademark}-foil and diffuse Tetratex{smalltextregistered} (TTX) substrates. Light yields of each reflector and TPB coating combination were compared. Reflection coefficients of TPB coated reflectors were independently measured using a spectroradiometer in a wavelength range between 200 and 650 nm. WLS coating on the PMT window was also studied. These measurements were used to define the parameters of the light reflectors of the ArDM experiment. Fifteen large $120times 25$ cm$^2$ TTX sheets were coated and assembled in the detector. Measurements in argon gas are reported providing good evidence of fulfilling the light collection requirements of the experiment.
While developing a liquid argon detector for dark matter searches we investigate the influence of air contamination on the VUV scintillation yield in gaseous argon at atmospheric pressure. We determine with a radioactive alpha-source the photon yield for various partial air pressures and different reflectors and wavelength shifters. We find for the fast scintillation component a time constant tau1= 11.3 +- 2.8 ns, independent of gas purity. However, the decay time of the slow component depends on gas purity and is a good indicator for the total VUV light yield. This dependence is attributed to impurities destroying the long-lived argon excimer states. The population ratio between the slowly and the fast decaying excimer states is determined for alpha-particles to be 5.5 +-0.6 in argon gas at 1100 mbar and room temperature. The measured mean life of the slow component is tau2 = 3.140 +- 0.067 microsec at a partial air pressure of 2 x 10-6 mbar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا