ﻻ يوجد ملخص باللغة العربية
To optimise the design of the light readout in the ArDM 1-ton liquid argon dark matter detector, a range of reflector and WLS coating combinations were investigated in several small setups, where argon scintillation light was generated by radioactive sources in gas at normal temperature and pressure and shifted into the blue region by tetraphenyl butadiene (TPB). Various thicknesses of TPB were deposited by spraying and vacuum evaporation onto specular 3M{smalltexttrademark}-foil and diffuse Tetratex{smalltextregistered} (TTX) substrates. Light yields of each reflector and TPB coating combination were compared. Reflection coefficients of TPB coated reflectors were independently measured using a spectroradiometer in a wavelength range between 200 and 650 nm. WLS coating on the PMT window was also studied. These measurements were used to define the parameters of the light reflectors of the ArDM experiment. Fifteen large $120times 25$ cm$^2$ TTX sheets were coated and assembled in the detector. Measurements in argon gas are reported providing good evidence of fulfilling the light collection requirements of the experiment.
ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30,keVr to detect recoi
The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an activ
The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time projection chamber designed for direct Dark Matter searches. Such a device allows to explore the low energy frontier in LAr with a charge imaging detector.
A SensL MicroFC-SMT-60035 6x6 mm$^2$ silicon photo-multiplier coated with a NOL-1 wavelength shifter have been tested in the liquid xenon to detect the 175-nm scintillation light. For comparison, a Hamamatsu vacuum ultraviolet sensitive MPPC VUV3 3x3
Liquid argon-based scintillation detectors are important for dark matter searches and neutrino physics. Argon scintillation light is in the vacuum ultraviolet region, making it hard to be detected by conventional means. Polyethylene naphthalate (PEN)