ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the quantum correlations of twin-beams of light to probe the added noise when one of the beams propagates through a medium with anomalous dispersion. The experiment is based on two successive four-wave mixing processes in rubidium vapor, which allow for the generation of bright two-mode-squeezed twin-beams followed by a controlled advancement while maintaining the shared quantum-correlations between the beams. The demonstrated effect allows the study of irreversible decoherence in a medium exhibiting anomalous dispersion, and for the first time shows the advancement of a bright nonclassical state of light. The advancement and corresponding degradation of the quantum correlations are found to be operating near the fundamental quantum limit imposed by using a phase-insensitive amplifier.
We experimentally determine the quantum discord present in two-mode squeezed vacuum generated by a four-wave mixing process in hot rubidium vapor. The frequency spectra of the discord, as well as the quantum and classical mutual information are also measured. In addition, the effects of symmetric attenuation introduced into both modes of the squeezed vacuum on the discord, the quantum mutual information and the classical correlations are examined experimentally. Finally, we show that due to the multi-spatial-mode nature of the four-wave mixing process, the quantum discord may exhibit sub- or superadditivity depending on which spatial channels are selected.
In this letter we experimentally demonstrate that the signal velocity, defined as the earliest time when a signal is detected above the realistic noise floor, may be altered by a region of anomalous dispersion. We encode information in the spatial de gree of freedom of an optical pulse so that the imprinted information is not limited by the frequency bandwidth of the region of anomalous dispersion. We then show that the combination of superluminal pulse propagation and realistic detectors with non-ideal quantum efficiency leads to a speed-up of the earliest experimentally obtainable arrival time of the transmitted signal even with the overall pulse experiencing unity gain. This speed-up is reliant upon non-ideal detectors and losses, as perfect detection efficiency would result in the speed of information being equal to the speed of light in vacuum, regardless of the group velocity of the optical pulses.
We have built a compact light source for bright squeezed twin-beams at 795,nm based on four-wave-mixing in atomic $^{85}$Rb vapor. With a total optical power of 400,mW derived from a free running diode laser and a tapered amplifier to pump the four-w ave-mixing process, we achieve 2.1,dB intensity difference squeezing of the twin beams below the standard quantum limit, without accounting for losses. Squeezed twin beams generated by the type of source presented here could be used as reference for the precise calibration of photodetectors. Transferring the quantum correlations from the light to atoms in order to generate correlated atom beams is another interesting prospect. In this work we investigate the dispersion that is generated by the employed four-wave-mixing process with respect to bandwidth and dependence on probe detuning. We are currently using this squeezed light source to test the transfer of spatial information and quantum correlations through media of anomalous dispersion.
We describe measurements demonstrating laser cooling of an atomic gas by means of collisional redistribution of radiation. The experiment uses rubidium atoms in the presence of several hundred bar of argon buffer gas pressure. Frequent collisions in the dense gas transiently shift a far red detuned optical field into resonance, while spontaneous emission occurs close to the unperturbed atomic transition frequency. Evidence for the cooling is obtained both via thermographic imaging and via thermographic deflection spectroscopy. The cooled gas has a density above 10$^{21}$ atoms/cm$^3$, yielding evidence for the laser cooling of a macroscopic ensemble of gas atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا