ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of an eclipsing binary -- PTF1 J072456$+$125301-- composed of a subdwarf B (sdB) star ($g=17.2^m$) with a faint companion. Subdwarf B stars are core helium-burning stars, which can be found on the extreme horizontal branch. Ab out half of them reside in close binary systems, but few are known to be eclipsing, for which fundamental stellar parameters can be derived. ewline We conducted an analysis of photometric data and spectra from the Palomar 60 and the 200 Hale telescope respectively. A quantitative spectral analysis found an effective temperature of $T_{text{eff}}=33900pm350$,K, log g = $5.74pm0.08$ and log($n_{text{He}}/n_{text{H}}) = -2.02 pm0.07$, typical for an sdB star. The companion does not contribute to the optical light of the system, except through a distinct reflection effect. From the light curve an orbital period of 0.09980(25),d and a system inclination of $83.56pm0.30,^{circ}$ were derived. The radial velocity curve yielded an orbital semi-amplitude of $K_1=95.8pm 8.1,text{km s$^{-1}$}$. The mass for the M-type dwarf companion is $0.155pm0.020,M_{odot}$. PTF1,J072456$+$125301 has similar atmospheric parameters to those of pulsating sdB stars (V346 Hya stars). Therefore it could be a high-priority object for asteroseismology, if pulsations were detected such as in the enigmatic case of NY Vir.
157 - S. Geier , T. Kupfer , U. Heber 2015
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims to find sdBs with compact companions like massive white dwarfs, neutron stars or black holes. Here we provide classifications, atmospheric parameters and a complete radial velocity (RV) catalogue containing 1914 single measurements for an sample of 177 hot subluminous stars discovered based on SDSS DR7. 110 stars show significant RV variability, while 67 qualify as candidates. We constrain the fraction of close massive compact companions {of hydrogen-rich hot subdwarfs} in our sample to be smaller than $sim1.3%$, which is already close to the theoretical predictions. However, the sample might still contain such binaries with longer periods exceeding $sim8,{rm d}$. We detect a mismatch between the $Delta RV_{rm max}$-distribution of the sdB and the more evolved sdOB and sdO stars, which challenges our understanding of their evolutionary connection. Furthermore, irregular RV variations of unknown origin with amplitudes of up to $sim180,{rm km,s^{-1}}$ on timescales of years, days and even hours have been detected in some He-sdO stars. They might be connected to irregular photometric variations in some cases.
93 - S. Geier , T. Kupfer , U. Heber 2015
Hot subdwarfs (sdBs) are core helium-burning stars, which lost almost their entire hydrogen envelope in the red-giant phase. Since a high fraction of those stars are in close binary systems, common envelope ejection is an important formation channel. We identified a total population of 51 close sdB+WD binaries based on time-resolved spectroscopy and multi-band photometry, derive the WD mass distribution and constrain the future evolution of these systems. Most WDs in those binaries have masses significantly below the average mass of single WDs and a high fraction of them might therefore have helium cores. We found 12 systems that will merge in less than a Hubble time and evolve to become either massive C/O WDs, AM,CVn systems, RCrB stars or even explode as supernovae type Ia.
56 - T. Kupfer 2015
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions like massive white dwarfs (M>1.0 M$_odot$), neutron stars, or stellar-mass black holes. We present orbital and atmospheric parameters and put constraints on the nature of the companions of 12 close hot subdwarf B star (sdB) binaries found in the course of the MUCHFUSS project. The systems show periods between 0.14 and 7.4 days. Three systems most likely have white dwarf companions. SDSS J083006.17+475150.3 is likely to be a rare example of a low-mass helium-core white dwarf. SDSS J095101.28+034757.0 shows an excess in the infrared that probably originates from a third companion in a wide orbit. SDSS J113241.58-063652.8 is the first helium deficient sdO star with a confirmed close companion. This study brings to 142 the number of sdB binaries with orbital periods of less than 30 days and with measured mass functions. We present an analysis of the minimum companion mass distribution and show that it is bimodal. One peak around 0.1 M$_odot$ corresponds to the low-mass main sequence and substellar companions. The other peak around 0.4 M$_odot$ corresponds to the white dwarf companions. The derived masses for the white dwarf companions are significantly lower than the average mass for single carbon-oxygen white dwarfs. In a T$_{rm eff}$-log(g) diagram of sdB+dM companions, we find signs that the sdB components are more massive than the rest of the sample. The full sample was compared to the known population of extremely low-mass white dwarf binaries as well as short-period white dwarfs with main sequence companions. Both samples show a significantly different companion mass distribution. We calculate merger timescales and timescales when the companion will fill its Roche Lobe and the system evolves into a cataclysmic variable.
The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP0247-25B). The remnant is in a rarely-observed state evolving to higher effective te mperatures at nearly constant luminosity prior to becoming a very low-mass white dwarf composed almost entirely of helium, i.e., it is a pre-He-WD. We have used the WASP photometric database to find 17 eclipsing binary stars with orbital periods P=0.7 to 2.2 days with similar lightcurves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic lightcurves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for 6 of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (approximately 0.2 solar masses). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low-mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25B.
274 - S. Geier , U. Heber , A. Tillich 2010
We give a brief review over the observational evidence for close substellar companions to hot subdwarf stars. The formation of these core helium-burning objects requires huge mass loss of their red giant progenitors. It has been suggested that beside s stellar companions substellar objects in close orbits may be able to trigger this mass loss. Such objects can be easily detected around hot subdwarf stars by medium or high resolution spectroscopy with an RV accuracy at the km/s-level. Eclipsing systems of HW Vir type stick out of transit surveys because of their characteristic light curves. The best evidence that substellar objects in close orbits around sdBs exist and that they are able to trigger the required mass loss is provided by the eclipsing system SDSS J0820+0008, which was found in the course of the MUCHFUSS project. Furthermore, several candidate systems have been discovered.
The Gaia mission will provide an unprecedented 3D view of our galaxy, it will obtain astrometric, photometric and spectrographic data for roughly one billion stars. We are particularly interested in the treasure chest of new data Gaia will produce fo r hot subdwarf B (sdB) stars. In order for Gaia to classify sdBs and estimate parameters model spectra covering a wide parameter range are needed. Here we describe the construction of an extensive grid, which will be used for this purpose.
Context: Hyper-velocity stars move so fast that only a supermassive black hole (SMBH) seems to be capable to accelerate them. Hence the Galactic centre (GC) is their only suggested place of origin. Edelmann et al. (2005) found the early B-star HE0437 -5439 to be too short-lived to have reached its current position in the Galactic halo if ejected from the GC, except if being a blue straggler. Its proximity to the LMC suggested an origin from this galaxy. Aims: The chemical signatures of stars at the GC are significantly different from those in the LMC. Hence, an accurate measurement of the abundance pattern of HE0437-5439 will yield a new tight constraint on the place of birth of this star. Methods: High-resolution spectra obtained with UVES on the VLT are analysed using state-of-the-art non-LTE modelling techniques. Results: We measured abundances of individual elements to very high accuracy in HE0437-5439 as well as in two reference stars, from the LMC and the solar neighbourhood. The abundance pattern is not consistent at all with that observed in stars near the GC, ruling our an origin from the GC. However, there is a high degree of consistency with the LMC abundance pattern. Our abundance results cannot rule out an origin in the outskirts of the Galactic disk. However, we find the life time of HE0437-5439 to be more than 3 times shorter than the time of flight to the edge of the disk, rendering a Galactic origin unlikely. Conclusions: Only one SMBH is known to be present in Galaxy and none in the LMC. Hence the exclusion of an GC origin challenges the SMBH paradigm. We conclude that there must be other mechanism(s) to accelerate stars to hyper-velocity speed than the SMBH. We draw attention to dynamical ejection from dense massive clusters, that has recently been proposed by Gvaramadze et al. (2008).
Tidally locked rotation is a frequently applied assumption that helps to measure masses of invisible compact companions in close binaries. The calculations of synchronization times are affected by large uncertainties in particular for stars with radi ative envelopes calling for observational constraints. We aim at verifying tidally locked rotation for the binary PG 0101+039, a subdwarf B star + white dwarf binary from its tiny (0.025 %) light variations measured with the MOST satellite (Randall et al. 2005). Binary parameters were derived from the mass function, apparent rotation and surface gravity of PG 0101+039 assuming a canonical mass of 0.47 Mo and tidally locked rotation. The light curve was then synthesised and was found to match the observed amplitude well. We verified that the light variations are due to ellipsoidal deformation and that tidal synchronization is established for PG 0101+039. We conclude that this assumption should hold for all sdB binaries with orbital periods of less than half a day. Hence the masses can be derived from systems too faint to measure tiny light variations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا