ترغب بنشر مسار تعليمي؟ اضغط هنا

The catalogue of radial velocity variable hot subluminous stars from the MUCHFUSS project

158   0   0.0 ( 0 )
 نشر من قبل Stephan Geier
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims to find sdBs with compact companions like massive white dwarfs, neutron stars or black holes. Here we provide classifications, atmospheric parameters and a complete radial velocity (RV) catalogue containing 1914 single measurements for an sample of 177 hot subluminous stars discovered based on SDSS DR7. 110 stars show significant RV variability, while 67 qualify as candidates. We constrain the fraction of close massive compact companions {of hydrogen-rich hot subdwarfs} in our sample to be smaller than $sim1.3%$, which is already close to the theoretical predictions. However, the sample might still contain such binaries with longer periods exceeding $sim8,{rm d}$. We detect a mismatch between the $Delta RV_{rm max}$-distribution of the sdB and the more evolved sdOB and sdO stars, which challenges our understanding of their evolutionary connection. Furthermore, irregular RV variations of unknown origin with amplitudes of up to $sim180,{rm km,s^{-1}}$ on timescales of years, days and even hours have been detected in some He-sdO stars. They might be connected to irregular photometric variations in some cases.

قيم البحث

اقرأ أيضاً

55 - N. Reindl , S. Geier , T. Kupfer 2016
In the course of the MUCHFUSS project we have recently discovered four radial velocity (RV) variable, hot (Teff $approx$ 80,000 - 110,000 K) post-asymptotic giant branch (AGB) stars. Among them, we found the first known RV variable O(He) star, the on ly second known RV variable PG 1159 close binary candidate, as well as the first two naked (i.e., without planetary nebula (PN)) H-rich post-AGB stars of spectral type O(H) that show significant RV variations. We present a non-LTE spectral analysis of these stars along with one further O(H)-type star whose RV variations were found to be not significant. We also report the discovery of an far-infrared excess in the case of the PG 1159 star. None of the stars in our sample displays nebular emission lines, which can be explained well in terms of a very late thermal pulse evolution in the case of the PG 1159 star. The missing PNe around the O(H)-type stars seem strange, since we find that several central stars of PNe have much longer post-AGB times. Besides the non-ejection of a PN, the occurrence of a late thermal pulse, or the re-accretion of the PN in the previous post-AGB evolution offer possible explanations for those stars not harbouring a PN (anymore). In case of the O(He) star J0757 we speculate that it might have been previously part of a compact He transferring binary system. In this scenario, the mass transfer must have stopped after a certain time, leaving behind a low mass close companion that could be responsible for the extreme RV shift of 107.0 $pm$ 22.0 km/s measured within only 31 min.
We present a new catalogue of 18 080 radial velocity standard stars selected from the APOGEE data. These RV standard stars are observed at least three times and have a median stability ($3sigma_{rm RV}$) around 240 m s$^{-1}$ over a time baseline lon ger than 200 days. They are largely distributed in the northern sky and could be extended to the southern sky by the future APOGEE-2 survey. Most of the stars are red giants ($J - K_{rm s} ge 0.5$) owing to the APOGEE target selection criteria. Only about ten per cent of them are main-sequence stars. The $H$ band magnitude range of the stars is 7-12.5 mag with the faint limit much fainter than the magnitudes of previous RV standard stars. As an application, we show the new set of standard stars to determine the radial velocity zero points of the RAVE, the LAMOST {and the Gaia-RVS} Galactic spectroscopic surveys.
We carried out a quantitative spectral analysis of 73 hot subluminous O-stars selected from the SDSS spectral database. While the helium deficient sdOs are scattered over a wide range of effective temperature and gravity, the helium enriched sdO star s are concentrated in a small intervall of 40kK to 50kK and log g = 5.5 ... 6.0. Comparing the distribution in the T_eff-log g-diagram with evolutionary tracks, we find the helium deficient sdOs to be the progeny of the sdB stars. The results for the helium enriched ones are less conclusive. Both the merger of two white dwarfs and the delayed helium core flash scenarios are viable options to be explored further.
Mass-loss rate is one of the most important stellar parameters. We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influen ce of the magnetic field and X-ray ionization on the stellar wind, and to study the interaction of subdwarf wind with mass loss from Be and cool companions. We used our kinetic equilibrium (NLTE) wind models with the radiative force determined from the radiative transfer equation in the comoving frame (CMF) to predict the wind structure of subluminous hot stars. Our models solve stationary hydrodynamical equations, that is the equation of continuity, equation of motion, and energy equation and predict basic wind parameters. We predicted the wind mass-loss rate as a function of stellar parameters, namely the stellar luminosity, effective temperature, and metallicity. The derived wind parameters (mass-loss rates and terminal velocities) agree with the values derived from the observations. The radiative force is not able to accelerate the homogeneous wind for stars with low effective temperatures and high surface gravities. We discussed the properties of winds of individual subdwarfs. The X-ray irradiation may inhibit the flow in binaries with compact components. In binaries with Be components, the winds interact with the disk of the Be star. Stellar winds exist in subluminous stars with low gravities or high effective temperatures. Despite their low mass-loss rates, they are detectable in the ultraviolet spectrum and cause X-ray emission. Subdwarf stars may lose a significant part of their mass during the evolution. The angular momentum loss in magnetic subdwarfs with wind may explain their low rotational velocities. Stellar winds are especially important in binaries, where they may be accreted on a compact or cool companion. (abridged)
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions (white dwarfs with masses $M>1.0 {rm M_{odot}}$, neutron stars or black holes). The existen ce of such systems is predicted by binary evolution calculations and some candidate systems have been found. We identified $simeq1100$ hot subdwarf stars from the Sloan Digital Sky Survey (SDSS). Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. About 70 radial velocity variable subdwarfs have been selected as good candidates for follow-up time resolved spectroscopy to derive orbital parameters and photometric follow-up to search for features like eclipses in the light curves. Up to now we found nine close binary sdBs with short orbital periods ranging from $simeq0.07 {rm d}$ to $1.5 {rm d}$. Two of them are eclipsing binaries with companions that are most likely of substellar nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا