ترغب بنشر مسار تعليمي؟ اضغط هنا

EL CVn-type binaries - Discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems

283   0   0.0 ( 0 )
 نشر من قبل Dr Pierre Maxted
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP0247-25B). The remnant is in a rarely-observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low-mass white dwarf composed almost entirely of helium, i.e., it is a pre-He-WD. We have used the WASP photometric database to find 17 eclipsing binary stars with orbital periods P=0.7 to 2.2 days with similar lightcurves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic lightcurves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for 6 of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (approximately 0.2 solar masses). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low-mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25B.



قيم البحث

اقرأ أيضاً

101 - J. van Roestel 2017
We report the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting of a core helium-composition pre-white dwarf and an early-type main-sequence companion, more than doubling the known population of these systems. We have used s upervised machine learning methods to search 0.8 million lightcurves from the Palomar Transient Factory, combined with SDSS, Pan-STARRS and 2MASS colours. The new systems range in orbital periods from 0.46-3.8 d and in apparent brightness from ~14-16 mag in the PTF $R$ or $g^{prime}$ filters. For twelve of the systems, we obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac Newton Telescope. We modelled the lightcurves, radial velocity curves and spectral energy distributions to determine the system parameters. The radii (0.3-0.7 $mathrm{R_{odot}}$) and effective temperatures (8000-17000 K) of the pre-He-WDs are consistent with stellar evolution models, but the masses (0.12-0.28 $mathrm{M_{odot}}$) show more variance than models predicted. This study shows that using machine learning techniques on large synoptic survey data is a powerful way to discover substantial samples of binary systems in short-lived evolutionary stages.
EL CVn-type eclipsing binaries are composed of a massive A-type main-sequence primary star and a hotter B-type secondary star. This paper presents the time-series photometric and asteroseismic results of the EL CVn-type star 1SWASP J024743.37-251549. 2. Well-defined eclipsing light curves were constructed by using the novel high-cadence $BV$ data and archival {it TESS} data, and the physical parameters of each binary component were derived by modeling the light curves. Multiple frequency analysis was performed to investigate the pulsation properties of the binary components. A reliable signal could not be detected in the high-frequency region of 100--300 day$^{-1}$, unlike in the previous discovery of three frequencies around 200 day$^{-1}$. This indicates that the pulsation amplitudes of the pre-helium white dwarf secondary component decreased considerably. By contrast, 12 frequencies were detected in the range of 33 to 53 day$^{-1}$. Most of them were classified as $delta$ Sct-type pulsations originating from the primary star. Theoretical frequencies for the seismic analysis were obtained by adding the non-rotating model frequencies from the GYRE and their rotational shifts from the complete calculation approach. Grid-based fitting was conducted for various stellar properties. The theoretical frequencies and stellar parameters of the best solution concurred well with the observations. The rotation rate was constrained to 1.50 $pm$ 0.02 day$^{-1}$, indicating the synchronized rotation of the primary star. The results imply that the complete approach based on the polytropic model is applicable to the seismic analysis of fast-rotating $delta$ Sct stars.
We perform binary evolution calculations on helium star - carbon-oxygen white dwarf (CO WD) binaries using the stellar evolution code MESA. This single degenerate channel may contribute significantly to thermonuclear supernovae at short delay times. We examine the thermal-timescale mass transfer from a 1.1 - 2.0 $M_{odot}$ helium star to a 0.90 - 1.05 $M_{odot}$ CO WD for initial orbital periods in the range 0.05 - 1 day. Systems in this range may produce a thermonuclear supernova, helium novae, a helium star - oxygen-neon WD binary, or a detached double CO WD binary. Our time-dependent calculations that resolve the stellar structures of both binary components allow accurate distinction between the eventual formation of a thermonuclear supernova (via central ignition of carbon burning) and that of an ONe WD (in the case of off-center ignition). Furthermore, we investigate the effect of a slow WD wind which implies a specific angular momentum loss from the binary that is larger than typically assumed. We find that this does not significantly alter the region of parameter space over which systems evolve toward thermonuclear supernovae. Our determination of the correspondence between initial binary parameters and the final outcome informs population synthesis studies of the contribution of the helium donor channel to thermonuclear supernovae. In addition, we constrain the orbital properties and observable stellar properties of the progenitor binaries of thermonuclear supernovae and helium novae.
159 - P. F. L. Maxted 2012
We report the serendipitous discovery from WASP archive photometry of a binary star in which an apparently normal A-type star (J0247-25A) eclipses a smaller, hotter subdwarf star (J0247-25B). The kinematics of J0247-25A show that it is a blue-straggl er member of the Galactic thick-disk. We present follow-up photometry and spectroscopy from which we derive approximate values for the mass, radius and luminosity for J0247-25B assuming that J0247-25A has the mass appropriate for a normal thick-disk star. We find that the properties of J0247-25B are well matched by models for a red giant stripped of its outer layers and currently in a shell hydrogen-burning stage. In this scenario, J0247-25B will go on to become a low mass white dwarf (M~0.25 solar masses) composed mostly of helium. J0247-25B can be studied in much greater detail than the handful of pre helium white dwarfs (pre-He-WD) identified to-date. These results have been published by Maxted et al., 2011. We also present a preliminary analysis of more recent observations of J0247-25 with the UVES spectrograph, from which we derive much improved masses for both stars in the binary. We find that both stars are more massive than expected and that J0247-25A rotates sub-synchronously by a factor of about 2. We also present lightcurves for 5 new eclipsing pre-He-WD subsequently identified from the WASP archive photometry, 4 of which have mass estimates for the subdwarf companion based on a pair of radial velocity measurements.
AM CVn systems are ultra-compact, helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems were discovered by searching for deep eclipses in the Zwicky Transient Facility (ZTF) lightcurves of white dwarfs selected using Gaia parallaxes. We obtained phase-resolved spectroscopy to confirm that all systems are AM CVn binaries, and we obtained high-speed photometry to confirm the eclipse and characterize the systems. The spectra of two long-period systems (61.5 and 53.3 minutes) show many emission and absorption lines, indicating the presence of N, O, Na, Mg, Si, and Ca, and also the K and Zn, elements which have never been detected in AM CVn systems before. By modelling the high-speed photometry, we measured the mass and radius of the donor star, potentially constraining the evolutionary channel that formed these AM CVn systems. We determined that the average mass of the accreting white dwarf is $approx0.8$$mathrm{M_{odot}}$, and that the white dwarfs in long-period systems are hotter than predicted by recently updated theoretical models. The donors have a high entropy and are a factor of $approx$ 2 more massive compared to zero-entropy donors at the same orbital period. The large donor radius is most consistent with He-star progenitors, although the observed spectral features seem to contradict this. The discovery of 5 new eclipsing AM~CVn systems is consistent with the known observed AM CVn space density and estimated ZTF recovery efficiency. Based on this estimate, we expect to find another 1--4 eclipsing AM CVn systems as ZTF continues to obtain data. This will further increase our understanding of the population, but will require high precision data to better characterize these 5 systems and any new discoveries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا