ترغب بنشر مسار تعليمي؟ اضغط هنا

We present basic properties of $sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$alpha$ emitters at $z sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$alpha$ flux sensitivity limit of $sim 1.6 times 10^{-16} rm erg cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$alpha$ emitters, which have H$alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$alpha$, [NII]$lambda lambda$6548,6583, [SII]$lambda lambda$6717, 6731, and [OI]$lambda lambda$6300,6364 are seen.
FastSound is a galaxy redshift survey using the near-infrared Fiber Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope, targeting H$alpha$ emitters at $z sim 1.18$--$1.54$ down to the sensitivity limit of H$alpha$ flux $sim 2 times 10^{ -16} rm erg cm^{-2} s^{-1}$. The primary goal of the survey is to detect redshift space distortions (RSD), to test General Relativity by measuring the growth rate of large scale structure and to constrain modified gravity models for the origin of the accelerated expansion of the universe. The target galaxies were selected based on photometric redshifts and H$alpha$ flux estimates calculated by fitting spectral energy distribution (SED) models to the five optical magnitudes of the Canada France Hawaii Telescope Legacy Survey (CFHTLS) Wide catalog. The survey started in March 2012, and all the observations were completed in July 2014. In total, we achieved $121$ pointings of FMOS (each pointing has a $30$ arcmin diameter circular footprint) covering $20.6$ deg$^2$ by tiling the four fields of the CFHTLS Wide in a hexagonal pattern. Emission lines were detected from $sim 4,000$ star forming galaxies by an automatic line detection algorithm applied to 2D spectral images. This is the first in a series of papers based on FastSound data, and we describe the details of the survey design, target selection, observations, data reduction, and emission line detections.
We describe the development of automated emission line detection software for the Fiber Multi-Object Spectrograph (FMOS), which is a near-infrared spectrograph fed by $400$ fibers from the $0.2$ deg$^2$ prime focus field of view of the Subaru Telesco pe. The software, FIELD (FMOS software for Image-based Emission Line Detection), is developed and tested mainly for the FastSound survey, which is targeting H$alpha$ emitting galaxies at $z sim 1.3$ to measure the redshift space distortion as a test of general relativity beyond $z sim 1$. The basic algorithm is to calculate the line signal-to-noise ratio ($S/N$) along the wavelength direction, given by a 2-D convolution of the spectral image and a detection kernel representing a typical emission line profile. A unique feature of FMOS is its use of OH airglow suppression masks, requiring the use of flat-field images to suppress noise around the mask regions. Bad pixels on the detectors and pixels affected by cosmic-rays are efficiently removed by using the information obtained from the FMOS analysis pipeline. We limit the range of acceptable line-shape parameters for the detected candidates to further improve the reliability of line detection. The final performance of line detection is tested using a subset of the FastSound data; the false detection rate of spurious objects is examined by using inverted frames obtained by exchanging object and sky frames. The false detection rate is $< 1$% at $S/N > 5$, allowing an efficient and objective emission line search for FMOS data at the line flux level of $gtrsim 1.0 times 10^{-16}$[erg/cm$^2$/s].
The unprecedentedly bright optical afterglow of GRB 130606A located by Swift at a redshift close to the reionization era (z = 5.913) provides a new opportunity to probe the ionization status of intergalactic medium (IGM). Here we present an analysis of the red Ly alpha damping wing of the afterglow spectrum taken by Subaru/FOCAS during 10.4-13.2 hr after the burst. We find that the minimal model including only the baseline power-law and HI absorption in the host galaxy does not give a good fit, leaving residuals showing concave curvature in 8400-8900 A with an amplitude of about 0.6% of the flux. Such a curvature in the short wavelength range cannot be explained either by extinction at the host with standard extinction curves, intrinsic curvature of afterglow spectra, or by the known systematic uncertainties in the observed spectrum. The red damping wing by intervening HI gas outside the host can reduce the residual by about 3 sigma statistical significance. We find that a damped Ly alpha system is not favored as the origin of this intervening HI absorption, from the observed Ly beta and metal absorption features. Therefore absorption by diffuse IGM remains as a plausible explanation. A fit by a simple uniform IGM model requires HI neutral fraction of f_HI ~ 0.1-0.5 depending on the distance to the GRB host, implying high f_HI IGM associated with the observed dark Gunn-Peterson (GP) troughs. This gives a new evidence that the reionization is not yet complete at z ~ 6.
Redshift space distortion (RSD) observed in galaxy redshift surveys is a powerful tool to test gravity theories on cosmological scales, but the systematic uncertainties must carefully be examined for future surveys with large statistics. Here we empl oy various analytic models of RSD and estimate the systematic errors on measurements of the structure growth-rate parameter, $fsigma_8$, induced by non-linear effects and the halo bias with respect to the dark matter distribution, by using halo catalogues from 40 realisations of $3.4 times 10^8$ comoving $h^{-3}$Mpc$^3$ cosmological N-body simulations. We consider hypothetical redshift surveys at redshifts z=0.5, 1.35 and 2, and different minimum halo mass thresholds in the range of $5.0 times 10^{11}$ -- $2.0 times 10^{13} h^{-1} M_odot$. We find that the systematic error of $fsigma_8$ is greatly reduced to ~5 per cent level, when a recently proposed analytical formula of RSD that takes into account the higher-order coupling between the density and velocity fields is adopted, with a scale-dependent parametric bias model. Dependence of the systematic error on the halo mass, the redshift, and the maximum wavenumber used in the analysis is discussed. We also find that the Wilson-Hilferty transformation is useful to improve the accuracy of likelihood analysis when only a small number of modes are available in power spectrum measurements.
The efficient selection of high-redshift emission galaxies is important for future large galaxy redshift surveys for cosmology. Here we describe the target selection methods for the FastSound project, a redshift survey for H alpha emitting galaxies a t z=1.2-1.5 using Subaru/FMOS to measure the linear growth rate fsigma 8 via Redshift Space Distortion (RSD) and constrain the theory of gravity. To select ~400 target galaxies in the 0.2 deg^2 FMOS field-of-view from photometric data of CFHTLS-Wide (u*griz), we test several different methods based on color-color diagrams or photometric redshift estimates from spectral energy distribution (SED) fitting. We also test the improvement in selection efficiency that can be achieved by adding near-infrared data from the UKIDSS DXS (J). The success rates of H alpha detection with FMOS averaged over two observed fields using these methods are 11.3% (color-color, optical), 13.6% (color-color, optical+NIR), 17.3% (photo-z, optical), and 15.1% (photo-z, optical+NIR). Selection from photometric redshifts tends to give a better efficiency than color-based methods, although there is no significant improvement by adding J band data within the statistical scatter. We also investigate the main limiting factors for the success rate, by using the sample of the HiZELS H alpha emitters that were selected by narrow-band imaging. Although the number density of total H alpha emitters having higher H alpha fluxes than the FMOS sensitivity is comparable with the FMOS fiber density, the limited accuracy of photometric redshift and H alpha flux estimations have comparable effects on the success rate of <~20% obtained from SED fitting.
154 - Tomonori Totani 2013
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
The growth rate of matter density perturbations has been measured from redshift-space distortion (RSD) in the galaxy power spectrum. We constrain the model parameter space for representative modified gravity models to explain the dark energy problem, by using the recent data of f_m(z)sigma_8(z) at the redshifts z = 0.06--0.8 measured by WiggleZ, SDSS LRG, BOSS, and 6dFGRS. We first test the Hu-Sawickis f(R) dark energy model, and find that only the parameter region close to the standard Lambda Cold Dark Matter (Lambda-CDM) model is allowed (lambda > 12 and 5 for n = 1.5 and 2, respectively, at 95% CL). We then investigate the covariant Galileon model and show that the parameter space consistent with the background expansion history is excluded by the RSD data at more than 10 sigma because of the too large growth rate predicted by the theory. Finally, we consider the extended Galileon scenario, and we find that, in contrast to the covariant Galileon, there is a model parameter space for a tracker solution that is consistent with the RSD data within a 2 sigma level.
51 - Tomonori Totani 2011
We have studied the properties of more than 1600 low-redshift galaxies by utilizing high-quality infrared flux measurements of the AKARI All-Sky Survey and physical quantities based on optical and 21-cm observations. Our goal is to understand the phy sics determining the infrared spectral energy distribution (SED). The ratio of the total infrared luminosity L_TIR, to the star-formation rate (SFR) is tightly correlated by a power-law to specific SFR (SSFR), and L_TIR is a good SFR indicator only for galaxies with the largest SSFR. We discovered a tight linear correlation for normal galaxies between the radiation field strength of dust heating, estimated by infrared SED fits (U_h), and that of galactic-scale infrared emission (U_TIR ~ L_TIR/R^2), where R is the optical size of a galaxy. The dispersion of U_h along this relation is 0.3 dex, corresponding to 13% dispersion in the dust temperature. This scaling and the U_h/U_TIR ratio can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. The data also indicate that the heated fraction of the total dust mass is anti-correlated to the dust column density, supporting this interpretation. In the large U_TIR limit, the data of circumnuclear starbursts indicate the existence of an upper limit on U_h, corresponding to the maximum SFR per gas mass of ~ 10 Gyr^{-1}. We find that the number of galaxies sharply drops when they become optically thin against dust-heating radiation, suggesting that a feedback process to galaxy formation (likely by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. Implications are discussed for the M_HI-size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.
95 - Tomonori Totani 2009
The dramatic size evolution of early-type galaxies from z ~ 2 to 0 poses a new challenge in the theory of galaxy formation, which may not be explained by the standard picture. It is shown here that the size evolution can be explained if the non-baryo nic cold dark matter is composed of compact objects having a mass scale of ~10^5 M_sun. This form of dark matter is consistent with or only weakly constrained by the currently available observations. The kinetic energy of the dark compact objects is transferred to stars by dynamical friction, and stars around the effective radius are pushed out to larger radii, resulting in a pure size evolution. This scenario has several good properties to explain the observations, including the ubiquitous nature of size evolution and faster disappearance of higher density galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا