ترغب بنشر مسار تعليمي؟ اضغط هنا

FIELD: An automated emission-line detection software for Subaru/FMOS near-infrared spectroscopy

148   0   0.0 ( 0 )
 نشر من قبل Motonari Tonegawa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the development of automated emission line detection software for the Fiber Multi-Object Spectrograph (FMOS), which is a near-infrared spectrograph fed by $400$ fibers from the $0.2$ deg$^2$ prime focus field of view of the Subaru Telescope. The software, FIELD (FMOS software for Image-based Emission Line Detection), is developed and tested mainly for the FastSound survey, which is targeting H$alpha$ emitting galaxies at $z sim 1.3$ to measure the redshift space distortion as a test of general relativity beyond $z sim 1$. The basic algorithm is to calculate the line signal-to-noise ratio ($S/N$) along the wavelength direction, given by a 2-D convolution of the spectral image and a detection kernel representing a typical emission line profile. A unique feature of FMOS is its use of OH airglow suppression masks, requiring the use of flat-field images to suppress noise around the mask regions. Bad pixels on the detectors and pixels affected by cosmic-rays are efficiently removed by using the information obtained from the FMOS analysis pipeline. We limit the range of acceptable line-shape parameters for the detected candidates to further improve the reliability of line detection. The final performance of line detection is tested using a subset of the FastSound data; the false detection rate of spurious objects is examined by using inverted frames obtained by exchanging object and sky frames. The false detection rate is $< 1$% at $S/N > 5$, allowing an efficient and objective emission line search for FMOS data at the line flux level of $gtrsim 1.0 times 10^{-16}$[erg/cm$^2$/s].



قيم البحث

اقرأ أيضاً

We present basic properties of $sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$alpha$ emitters at $z sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$alpha$ flux sensitivity limit of $sim 1.6 times 10^{-16} rm erg cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$alpha$ emitters, which have H$alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$alpha$, [NII]$lambda lambda$6548,6583, [SII]$lambda lambda$6717, 6731, and [OI]$lambda lambda$6300,6364 are seen.
The Prime Focus Spectrograph (PFS) is a new multi-fiber spectrograph on Subaru telescope. PFS will cover around 1.4 degree diameter field with ~2400 fibers. To ensure precise positioning of the fibers, a metrology camera is designed to provide the fi ber position information within 5 {mu}m error. The final positioning accuracy of PFS is targeted to be better than 10 {mu}m. The metrology camera will locate at the Cassegrain focus of Subaru telescope to cover the whole focal plane. The PFS metrology camera will also serve for the existing multi-fiber infrared spectrograph FMOS.
We present the Umbrella software suite for asteroid detection, validation, identification and reporting. The current core of Umbrella is an open-source modular library, called Umbrella2, that includes algorithms and interfaces for all steps of the pr ocessing pipeline, including a novel detection algorithm for faint trails. Building on the library, we have also implemented a detection pipeline accessible both as a desktop program (ViaNearby) and via a web server (Webrella), which we have successfully used in near real-time data reduction of a few asteroid surveys on the Wide Field Camera of the Isaac Newton Telescope. In this paper we describe the library, focusing on the interfaces and algorithms available, and we present the results obtained with the desktop version on a set of well-curated fields used by the EURONEAR project as an asteroid detection benchmark.
We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ~ 2 obtained with the FIRE spectrometer on the Magellan Baade telescope. The sample was selected from the WISP survey, which uses the near-infrared grism of the Hubb le Space Telescope Wide Field Camera 3 to detect emission-line galaxies over 0.3 < z < 2.3. Our FIRE follow-up spectroscopy (R~5000) over 1.0-2.5 micron permits detailed measurements of physical properties of the z~2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ~5-100 M_sun yr-1. We derive a median metallicity for the sample of ~0.45 Z_sun, and the estimated stellar masses range from ~10^8.5 - 10^9.5 M_sun. The average ionization parameters measured for the sample are typically much higher than what is found for local star-forming galaxies. We derive composite spectra from the FIRE sample, from which we infer typical nebular electron densities of ~100-400 cm^-3. Based on the location of the galaxies and composite spectra on BPT diagrams, we do not find evidence for significant AGN activity in the sample. Most of the galaxies as well as the composites are offset in the BPT diagram toward higher [O III]/H-beta at a given [N II]/H-alpha, in agreement with other observations of z > 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/H-beta versus [S II]/H-alpha diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which may contribute to the offset of the high-redshift galaxies from the local star-forming sequence in the [O III]/H-beta versus [N II]/H-alpha diagram. We speculate that the elevated nitrogen abundance could result from substantial numbers of Wolf-Rayet stars in starbursting galaxies at z~2. (Abridged)
Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F/2 prime-focus of the Subaru Telescope. The field coverage of 30 diameter is achieved using a new 3-element corrector optimized in the near-infrared (0.9-1.8um) wavelength range. Due to limited space at the prime-focus, we have had to develop a novel fibre positioner called Echidna together with two OH-airglow suppressed spectrographs. FMOS consists of three subsystems: the prime focus unit for IR, the fibre positioning system/connector units, and the two spectrographs. After full systems integration, FMOS was installed on the telescope in late 2007. Many aspects of performance were checked through various test and engineering observations. In this paper, we present the optical and mechanical components of FMOS and show the results of our on-sky engineering observations to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا