ترغب بنشر مسار تعليمي؟ اضغط هنا

The left-right chiral and ferromagnetic-antiferromagnetic double spin-glass clock model, with the crucially even number of states q=4 and in three dimensions d=3, has been studied by renormalization-group theory. We find, for the first time to our kn owledge, four different spin-glass phases, including conventional, chiral, and quadrupolar spin-glass phases, and phase transitions between spin-glass phases. The chaoses, in the different spin-glass phases and in the phase transitions of the spin-glass phases with the other spin-glass phases, with the non-spin-glass ordered phases, and with the disordered phase, are determined and quantified by Lyapunov exponents. It is seen that the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also otherwise very rich, including regular and temperature-inverted devils staircases and reentrances.
The chiral clock spin-glass model with q=5 states, with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations, is studied in d=3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in temperature, antiferromagnetic bond concentration p, random chirality strength, and right-chirality concentration c. The system has a ferromagnetic phase, a multitude of different chiral phases, a chiral spin-glass phase, and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the disordered phase boundary and form a spectrum of devils staircases, where different ordered phases characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the disordered phase, bordered by fragments of regular and temperature-inverted devils staircases, are seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing videos.
The chiral spin-glass Potts system with q=3 states is studied in d=2 and 3 spatial dimensions by renormalization-group theory and the global phase diagrams are calculated in temperature, chirality concentration p, and chirality-breaking concentration c, with determination of phase chaos and phase-boundary chaos. In d=3, the system has ferromagnetic, left-chiral, right-chiral, chiral spin-glass, and disordered phases. The phase boundaries to the ferromagnetic, left- and right-chiral phases show, differently, an unusual, fibrous patchwork (microreentrances) of all four (ferromagnetic, left-chiral, right-chiral, chiral spin-glass) ordered ordered phases, especially in the multicritical region. The chaotic behavior of the interactions, under scale change, are determined in the chiral spin-glass phase and on the boundary between the chiral spin-glass and disordered phases, showing Lyapunov exponents in magnitudes reversed from the usual ferromagnetic-antiferromagnetic spin-glass systems. At low temperatures, the boundaries of the left- and right-chiral phases become thresholded in p and c. In the d=2, the chiral spin-glass system does not have a spin-glass phase, consistently with the lower-critical dimension of ferromagnetic-antiferromagnetic spin glasses. The left- and right-chirally ordered phases show reentrance in chirality concentration p.
Hard-spin mean-field theory has recently been applied to Ising magnets, correctly yielding the absence and presence of an interface roughening transition respectively in $d=2$ and $d=3$ dimensions and producing the ordering-roughening phase diagram f or isotropic and anisotropic systems. The approach has now been extended to the effects of quenched random pinning centers and missing bonds on the interface of isotropic and anisotropic Ising models in $d=3$. We find that these frozen impurities cause domain boundary roughening that exhibits consecutive thresholding transitions as a function interaction of anisotropy. For both missing-bond and pinning-center impurities, for moderately large values the anisotropy, the systems saturate to the solid-on-solid limit, exhibiting a single universal curve for the domain boundary width as a function of impurity concentration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا