ﻻ يوجد ملخص باللغة العربية
The left-right chiral and ferromagnetic-antiferromagnetic double spin-glass clock model, with the crucially even number of states q=4 and in three dimensions d=3, has been studied by renormalization-group theory. We find, for the first time to our knowledge, four different spin-glass phases, including conventional, chiral, and quadrupolar spin-glass phases, and phase transitions between spin-glass phases. The chaoses, in the different spin-glass phases and in the phase transitions of the spin-glass phases with the other spin-glass phases, with the non-spin-glass ordered phases, and with the disordered phase, are determined and quantified by Lyapunov exponents. It is seen that the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also otherwise very rich, including regular and temperature-inverted devils staircases and reentrances.
We investigate the generalized p-spin models that contain arbitrary diagonal operators U with no reflection symmetry. We derive general equations that give an opportunity to uncover the behavior of the system near the glass transition at different (c
The chiral spin-glass Potts system with q=3 states is studied in d=2 and 3 spatial dimensions by renormalization-group theory and the global phase diagrams are calculated in temperature, chirality concentration p, and chirality-breaking concentration
Distinctive orderings and phase diagram structures are found, from renormalization-group theory, for odd q-state clock spin-glass models in d=3 dimensions. These models exhibit asymmetric phase diagrams, as is also the case for quantum Heisenberg spi
The spontaneous transitions between D-dimensional spatial maps in an attractor neural network are studied. Two scenarios for the transition from on map to another are found, depending on the level of noise: (1) through a mixed state, partly localized
We develop a novel method based in the sparse random graph to account the interplay between geometric frustration and disorder in cluster magnetism. Our theory allows to introduce the cluster network connectivity as a controllable parameter. Two type