ترغب بنشر مسار تعليمي؟ اضغط هنا

456 - Tobias Barthel 2021
We classify the localizing tensor ideals of the integral stable module category for any finite group $G$. This results in a generic classification of $mathbb{Z}[G]$-lattices of finite and infinite rank and globalizes the modular case established in c elebrated work of Benson, Iyengar, and Krause. Further consequences include a verification of the generalized telescope conjecture in this context, a tensor product formula for integral cohomological support, as well as a generalization of Quillens stratification theorem for group cohomology. Our proof makes use of novel descent techniques for stratification in tensor-triangular geometry that are of independent interest.
We compare the homological support and tensor triangular support for `big objects in a rigidly-compactly generated tensor triangulated category. We prove that the comparison map from the homological spectrum to the tensor triangular spectrum is a bij ection and that the two notions of support coincide whenever the category is stratified, extending work of Balmer. Moreover, we clarify the relations between salient properties of support functions and exhibit counter-examples highlighting the differences between homological and tensor triangular support.
We systematically develop a theory of stratification in the context of tensor triangular geometry and apply it to classify the localizing tensor-ideals of certain categories of spectral $G$-Mackey functors for all finite groups $G$. Our theory of str atification is based on the approach of Stevenson which uses the Balmer-Favi notion of big support for tensor-triangulated categories whose Balmer spectrum is weakly noetherian. We clarify the role of the local-to-global principle and establish that the Balmer-Favi notion of support provides the universal approach to weakly noetherian stratification. This provides a uniform new perspective on existing classifications in the literature and clarifies the relation with the theory of Benson-Iyengar-Krause. Our systematic development of this approach to stratification, involving a reduction to local categories and the ability to pass through finite {e}tale extensions, may be of independent interest. Moreover, we strengthen the relationship between stratification and the telescope conjecture. The starting point for our equivariant applications is the recent computation by Patchkoria-Sanders-Wimmer of the Balmer spectrum of the category of derived Mackey functors, which was found to capture precisely the height $0$ and height $infty$ chromatic layers of the spectrum of the equivariant stable homotopy category. We similarly study the Balmer spectrum of the category of $E(n)$-local spectral Mackey functors noting that it bijects onto the height $le n$ chromatic layers of the spectrum of the equivariant stable homotopy category; conjecturally the topologies coincide. Despite our incomplete knowledge of the topology of the Balmer spectrum, we are able to completely classify the localizing tensor-ideals of these categories of spectral Mackey functors.
We prove the height two case of a conjecture of Hovey and Strickland that provides a $K(n)$-local analogue of the Hopkins--Smith thick subcategory theorem. Our approach first reduces the general conjecture to a problem in arithmetic geometry posed by Chai. We then use the Gross--Hopkins period map to verify Chais Hope at height two and all primes. Along the way, we show that the graded commutative ring of completed cooperations for Morava $E$-theory is coherent, and that every finitely generated Morava module can be realized by a $K(n)$-local spectrum as long as $2p-2>n^2+n$. Finally, we deduce consequences of our results for descent of Balmer spectra.
The Stolz--Teichner program proposes a deep connection between geometric field theories and certain cohomology theories. In this paper, we extend this connection by developing a theory of geometric power operations for geometric field theories restri cted to closed bordisms. These operations satisfy relations analogous to the ones exhibited by their homotopical counterparts. We also provide computational tools to identify the geometrically defined operations with the usual power operations on complexified equivariant $K$-theory. Further, we use the geometric approach to construct power operations for complexified equivariant elliptic cohomology.
Let $A$ be a finite abelian $p$ group of rank at least $2$. We show that $E^0(BA)/I_{tr}$, the quotient of the Morava $E$-cohomology of $A$ by the ideal generated by the image of the transfers along all proper subgroups, contains $p$-torsion. The proof makes use of transchromatic character theory.
We investigate when a commutative ring spectrum $R$ satisfies a homotopical version of local Gorenstein duality, extending the notion previously studied by Greenlees. In order to do this, we prove an ascent theorem for local Gorenstein duality along morphisms of $k$-algebras. Our main examples are of the form $R = C^*(X;k)$, the ring spectrum of cochains on a space $X$ for a field $k$. In particular, we establish local Gorenstein duality in characteristic $p$ for $p$-compact groups and $p$-local finite groups as well as for $k = Q$ and $X$ a simply connected space which is Gorenstein in the sense of Dwyer, Greenlees, and Iyengar.
Let $X$ be a topological space with Noetherian mod $p$ cohomology and let $C^*(X;mathbb{F}_p)$ be the commutative ring spectrum of $mathbb{F}_p$-valued cochains on $X$. The goal of this paper is to exhibit conditions under which the category of modul e spectra on $C^*(X;mathbb{F}_p)$ is stratified in the sense of Benson, Iyengar, Krause, providing a classification of all its localizing subcategories. We establish stratification in this sense for classifying spaces of a large class of topological groups including Kac--Moody groups as well as whenever $X$ admits an $H$-space structure. More generally, using Lannes theory we prove that stratification for $X$ is equivalent to a condition that generalizes Chouinards theorem for finite groups. In particular, this relates the generalized telescope conjecture in this setting to a question in unstable homotopy theory.
In previous work, we used an $infty$-categorical version of ultraproducts to show that, for a fixed height $n$, the symmetric monoidal $infty$-categories of $E_{n,p}$-local spectra are asymptotically algebraic in the prime $p$. In this paper, we prov e the analogous result for the symmetric monoidal $infty$-categories of $K_{p}(n)$-local spectra, where $K_{p}(n)$ is Morava $K$-theory at height $n$ and the prime $p$. This requires $infty$-categorical tools suitable for working with compactly generated symmetric monoidal $infty$-categories with non-compact unit. The equivalences that we produce here are compatible with the equivalences for the $E_{n,p}$-local $infty$-categories.
58 - Tobias Barthel 2019
In this note, we give a brief overview of the telescope conjecture and the chromatic splitting conjecture in stable homotopy theory. In particular, we provide a proof of the folklore result that Ravenels telescope conjecture for all heights combined is equivalent to the generalized telescope conjecture for the stable homotopy category, and explain some similarities with modular representation theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا