ﻻ يوجد ملخص باللغة العربية
We prove the height two case of a conjecture of Hovey and Strickland that provides a $K(n)$-local analogue of the Hopkins--Smith thick subcategory theorem. Our approach first reduces the general conjecture to a problem in arithmetic geometry posed by Chai. We then use the Gross--Hopkins period map to verify Chais Hope at height two and all primes. Along the way, we show that the graded commutative ring of completed cooperations for Morava $E$-theory is coherent, and that every finitely generated Morava module can be realized by a $K(n)$-local spectrum as long as $2p-2>n^2+n$. Finally, we deduce consequences of our results for descent of Balmer spectra.
Applying the theory of elliptic functions we establish two Jacobi theta function identities. From these identities we confirm two q-trigonometric identities conjectured by Gosper. As an application, we give a new and simple proof of a Pi_{q}-identity of Gosper.
We compute the homotopy groups of spectra associated by a theorem of Lurie to the Shimura curves of discriminants 6, 10, and 14, beginning with a computation of integral rings of automorphic forms on these curves. As an application, we find that a ge
In this note, we give a brief overview of the telescope conjecture and the chromatic splitting conjecture in stable homotopy theory. In particular, we provide a proof of the folklore result that Ravenels telescope conjecture for all heights combined
We show that the K_{2i}(Z[x]/(x^m),(x)) is finite of order (mi)!(i!)^{m-2} and that K_{2i+1}(Z[x]/(x^m),(x)) is free abelian of rank m-1. This is accomplished by showing that the equivariant homotopy groups of the topological Hochschild spectrum THH(
We study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure. The trace of Frobenius on the alternating sum of the etale cohomology groups of these local systems can be calculate