ترغب بنشر مسار تعليمي؟ اضغط هنا

A short introduction to the telescope and chromatic splitting conjectures

59   0   0.0 ( 0 )
 نشر من قبل Tobias Barthel
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Tobias Barthel




اسأل ChatGPT حول البحث

In this note, we give a brief overview of the telescope conjecture and the chromatic splitting conjecture in stable homotopy theory. In particular, we provide a proof of the folklore result that Ravenels telescope conjecture for all heights combined is equivalent to the generalized telescope conjecture for the stable homotopy category, and explain some similarities with modular representation theory.

قيم البحث

اقرأ أيضاً

We calculate the homotopy type of $L_1L_{K(2)}S^0$ and $L_{K(1)}L_{K(2)}S^0$ at the prime 2, where $L_{K(n)}$ is localization with respect to Morava $K$-theory and $L_1$ localization with respect to $2$-local $K$ theory. In $L_1L_{K(2)}S^0$ we find a ll the summands predicted by the Chromatic Splitting Conjecture, but we find some extra summands as well. An essential ingredient in our approach is the analysis of the continuous group cohomology $H^ast_c(mathbb{G}_2,E_0)$ where $mathbb{G}_2$ is the Morava stabilizer group and $E_0 = mathbb{W}[[u_1]]$ is the ring of functions on the height $2$ Lubin-Tate space. We show that the inclusion of the constants $mathbb{W} to E_0$ induces an isomorphism on group cohomology, a radical simplification.
In this short review we describe some aspects of $kappa$-deformation. After discussing the algebraic and geometric approaches to $kappa$-Poincare algebra we construct the free scalar field theory, both on non-commutative $kappa$-Minkowski space and o n curved momentum space. Finally, we make a few remarks concerning interacting scalar field.
We calculate the rational homotopy and the K(1)-local homotopy of the K(2)-local sphere at the prime 3 and level 2. We use this to verify the chromatic splitting conjecture in this case.
We discuss how to construct models of interacting anyons by generalizing quantum spin Hamiltonians to anyonic degrees of freedom. The simplest interactions energetically favor pairs of anyons to fuse into the trivial (identity) channel, similar to th e quantum Heisenberg model favoring pairs of spins to form spin singlets. We present an introduction to the theory of anyons and discuss in detail how basis sets and matrix representations of the interaction terms can be obtained, using non-Abelian Fibonacci anyons as example. Besides discussing the golden chain, a one-dimensional system of anyons with nearest neighbor interactions, we also present the derivation of more complicated interaction terms, such as three-anyon interactions in the spirit of the Majumdar-Ghosh spin chain, longer range interactions and two-leg ladders. We also discuss generalizations to anyons with general non-Abelian su(2)_k statistics. The k to infinity limit of the latter yields ordinary SU(2) spin chains.
297 - Greg Friedman 2021
This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familia r with just the fundamentals of algebraic topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا