ترغب بنشر مسار تعليمي؟ اضغط هنا

The proposed third-generation gravitational-wave detectors Einstein Telescope will have a triangular design that consists of three colocated interferometers. Summing the strain outputs from the three interferometers will cancel any gravitational-wave signal and the resultant signal-free stream is known as null stream. The null stream is in a fixed subspace of the observation space of Einstein telescope where no gravitational-wave signal can exist. In this paper, we establish the decomposition of the observation space of Einstein Telescope into the signal space that contains all possible gravitational-wave signals and the null space that contains the null stream. We show that the results of Bayesian parameter estimation and model selection using the strain data in the signal space are identical to that using the full set of strain data. This implies that one could use a fraction of the strain data to extract all information of the source which reduces the memory usage and speeds up the likelihood evaluation. We also discuss the existence of a fixed null space in Einstein Telescope allows the unbiased estimation of the noise properties in the signal-free subspace.
Advanced LIGO and Advanced Virgo could observe the first lensed gravitational waves in the coming years, while the future Einstein Telescope could observe hundreds of lensed events. Ground-based gravitational-wave detectors can resolve arrival time d ifferences of the order of the inverse of the observed frequencies. As LIGO/Virgo frequency band spans from a few $rm Hz$ to a few $ rm kHz$, the typical time resolution of current interferometers is of the order of milliseconds. When microlenses are embedded in galaxies or galaxy clusters, lensing can become more prominent and result in observable time delays at LIGO/Virgo frequencies. Therefore, gravitational waves could offer an exciting alternative probe of microlensing. However, currently, only a few lensing configurations have been worked out in the context of gravitational-wave lensing. In this paper, we present lensingGW, a Python package designed to handle both strong and microlensing of compact binaries and the related gravitational-wave signals. This synergy paves the way for systematic parameter space investigations and the detection of arbitrary lens configurations and compact sources. We demonstrate the working mechanism of lensingGW and its use to study microlenses embedded in galaxies.
In the multi-messenger astronomy era, accurate sky localization and low latency time of gravitational-wave (GW) searches are keys in triggering successful follow-up observations on the electromagnetic counterpart of GW signals. We, in this work, focu s on the latency time and study the feasibility of adopting supervised machine learning (ML) method for ranking candidate GW events. We consider two popular ML methods, random forest and neural networks. We observe that the evaluation time of both methods takes tens of milliseconds for $sim$ 45,000 evaluation samples. We compare the classification efficiency between the two ML methods and a conventional low-latency search method with respect to the true positive rate at given false positive rate. The comparison shows that about 10% improved efficiency can be achieved at lower false positive rate $sim 2 times 10^{-5}$ with both ML methods. We also present that the search sensitivity can be enhanced by about 18% at $sim 10^{-11}$Hz false alarm rate. We conclude that adopting ML methods for ranking candidate GW events is a prospective approach to yield low latency and high efficiency in searches for GW signals from compact binary mergers.
We show how LIGO is expected to detect coalescing binary black holes at $z>1$, that are lensed by the intervening galaxy population. Gravitational magnification, $mu$, strengthens gravitational wave signals by $sqrt{mu}$, without altering their frequ encies, which if unrecognised leads to an underestimate of the event redshift and hence an overestimate of the binary mass. High magnifications can be reached for coalescing binaries because the region of intense gravitational wave emission during coalescence is so small ($sim$100km), permitting very close projections between lensing caustics and gravitational-wave events. Our simulations incorporate accurate waveforms convolved with the LIGO power spectral density. Importantly, we include the detection dependence on sky position and orbital orientation, which for the LIGO configuration translates into a wide spread in observed redshifts and chirp masses. Currently we estimate a detectable rate of lensed events rateEarly{}, that rises to rateDesign{}, at LIGOs design sensitivity limit, depending on the high redshift rate of black hole coalescence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا