ﻻ يوجد ملخص باللغة العربية
In the multi-messenger astronomy era, accurate sky localization and low latency time of gravitational-wave (GW) searches are keys in triggering successful follow-up observations on the electromagnetic counterpart of GW signals. We, in this work, focus on the latency time and study the feasibility of adopting supervised machine learning (ML) method for ranking candidate GW events. We consider two popular ML methods, random forest and neural networks. We observe that the evaluation time of both methods takes tens of milliseconds for $sim$ 45,000 evaluation samples. We compare the classification efficiency between the two ML methods and a conventional low-latency search method with respect to the true positive rate at given false positive rate. The comparison shows that about 10% improved efficiency can be achieved at lower false positive rate $sim 2 times 10^{-5}$ with both ML methods. We also present that the search sensitivity can be enhanced by about 18% at $sim 10^{-11}$Hz false alarm rate. We conclude that adopting ML methods for ranking candidate GW events is a prospective approach to yield low latency and high efficiency in searches for GW signals from compact binary mergers.
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of
In light of the recent dazzling discovery of GW170817, we discuss several new scientific opportunities that would emerge in multi-messenger time-domain astrophysics if a facility like the next generation Very Large Array (ngVLA) were to work in tande
The detection of the binary neutron star (BNS) merger, GW170817, was the first success story of multi-messenger observations of compact binary mergers. The inferred merger rate along with the increased sensitivity of the ground-based gravitational-wa
We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal c
Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little m