ترغب بنشر مسار تعليمي؟ اضغط هنا

314 - Lina Wu , Yungui Gong , Tianjun Li 2021
The formation of primordial black hole (PBH) dark matter and the generation of scalar induced secondary gravitational waves (SIGWs) have been studied in the generic no-scale supergravity inflationary models. By adding an exponential term to the Kahle r potential, the inflaton experiences a period of ultra-slow-roll and the amplitude of primordial power spectrum is enhanced to $mathcal{O}(10^{-2})$. The enhanced power spectra of primordial curvature perturbations can have both sharp and broad peaks. A wide mass range of PBH is realized in our model, and the frequencies of the scalar induced gravitational waves are ranged form nHz to Hz. We show three benchmark points where the PBH mass generated during inflation is around $mathcal{O}(10^{-16}M_{odot})$, $mathcal{O}(10^{-12}M_{odot})$ and $mathcal{O}(M_{odot})$. The PBHs with masses around $mathcal{O}(10^{-16}M_{odot})$ and $ mathcal{O}(10^{-12}M_{odot})$ can make up almost all the dark matter, and the associated SIGWs can be probed by the upcoming space-based gravitational wave (GW) observatory. Also, the wide SIGWs associated with the formation of solar mass PBH can be used to interpret the stochastic GW background in the nHz band, detected by the North American Nanohertz Observatory for Gravitational Waves, and can be tested by future interferometer-type GW observations.
Combining the multi-lepton searches at the LHC, we study the possibilities of accommodating the new data of muon and electron $g-2$ anomalies in the lepton-specific inert two-Higgs-doublet model. We take the heavy CP-even Higgs as the 125 GeV Higgs, and find the muon and electron $g-2$ anomalies can be explained simultaneously in the region of 5 GeV $< m_h<60$ GeV, 200 GeV $<m_A< 620$ GeV, 190 GeV $<m_{H^pm}< 620$ GeV for appropriate Yukawa couplings between leptons and inert Higgs. Meanwhile, the model can give a better fit to the data of lepton universality in $tau$ decays than the SM. Further, the multi-lepton event searches at the LHC impose a stringent upper bound on $m_h$, $m_h<$ 35 GeV.
80 - Jun Guo , Jinmian Li , Tianjun Li 2020
By representing each collider event as a point cloud, we adopt the Graphic Convolutional Network (GCN) with focal loss to reconstruct the Higgs jet in it. This method provides higher Higgs tagging efficiency and better reconstruction accuracy than th e traditional methods which use jet substructure information. The GCN, which is trained on events of the $H$+jets process, is capable of detecting a Higgs jet in events of several different processes, even though the performance degrades when there are boosted heavy particles other than the Higgs in the event. We also demonstrate the signal and background discrimination capacity of the GCN by applying it to the $tbar{t}$ process. Taking the outputs of the network as new features to complement the traditional jet substructure variables, the $tbar{t}$ events can be separated further from the $H$+jets events.
Based on the jet image approach, which treats the energy deposition in each calorimeter cell as the pixel intensity, the Convolutional neural network (CNN) method has been found to achieve a sizable improvement in jet tagging compared to the traditio nal jet substructure analysis. In this work, the Mask R-CNN framework is adopted to reconstruct Higgs jets in collider-like events, with the effects of pileup contamination taken into account. This automatic jet reconstruction method achieves higher efficiency of Higgs jet detection and higher accuracy of Higgs boson four-momentum reconstruction than traditional jet clustering and jet substructure tagging methods. Moreover, the Mask R-CNN trained on events containing a single Higgs jet is capable of detecting one or more Higgs jets in events of several different processes, without apparent degradation in reconstruction efficiency and accuracy. The outputs of the network also serve as new handles for the $tbar{t}$ background suppression, complementing to traditional jet substructure variables.
We for the first time obtain the analytical solution for the quirk equation of motion in an approximate way. Based on it, we study several features of quirk trajectory in a more precise way, including quirk oscillation amplitude, number of periods, a s well as the thickness of quirk pair plane. Moreover, we find an exceptional case where the quirk crosses at least one of the tracking layers repeatedly. Finally, we consider the effects of ionization energy loss and fixed direction of infracolor string for a few existing searches.
We present a minimal extension of the Standard Model that can simultaneously account for the anomalies in semi-leptonic B meson decays and the muon g-2, give large CP violation in charm decays (up to the value recently measured by LHCb), and provide thermal-relic dark matter, while evading all constraints set by other flavour observables, LHC searches, and dark matter experiments. This is achieved by introducing only four new fields: a vectorlike quark, a vectorlike lepton, and two scalar fields (a singlet and a doublet) that mix due to the electroweak symmetry breaking and provide the dark matter candidate. The singlet-doublet mixing induces chirally-enhanced dipole transitions, which are crucial for the explanation of the muon g-2 discrepancy and the large charm CP violation, and allows to achieve the observed dark matter density in wide regions of the parameter space.
The quirk particle carries Lorentz force and long-range infracolor force, while suffers relatively large ionization energy loss inside the detector. It can be indirectly constrained by mono-jet search or directly search through co-planar hits if the confinement scale is not too low ($Lambda gtrsim 100$ eV). Considering the ionization energy loss inside tracker, we improve the co-planar search. We also will solve the equation of motion for quirks numerically by including all of the important contributions. Based on our selection strategy, the $sim 100$ fb$^{-1}$ dataset at the LHC will be able to probe the colored fermion/scalar quirks with masses up to {2.1/1.1 TeV}, and the color neutral fermion/scalar quirks with masses up to {450/150 GeV}, respectively.
Based on the precise nuclei data released by AMS-02, we study the spectra hardening of both the primary (proton, helium, carbon, oxygen, and the primary component of nitrogen) and the secondary (anti-proton, lithium, beryllium, boron and the secondar y component of nitrogen) cosmic ray (CR) nuclei. With the diffusion-reacceleration model, we consider two schemes to reproduce the hardening in the spectra: (i) A high-rigidity break in primary source injection; (ii) A high-rigidity break in diffusion coefficient. The global fitting results show that both schemes could reproduce the spectra hardening in current status. More precise multi-TV data (especially the data of secondary CR species) is needed if one wants to distinguish these two schemes. In our global fitting, each of the nuclei species is allocated an independent solar modulation potential and a re-scale factor (which accounts for the isotopic abundance for primary nuclei species and uncertainties of production cross section or inhomogeneity of CR sources and propagation for secondary nuclei species). The fitting values of these two parameter classes show us some hints on some new directions in CR physics. All the fitted re-scale factors of primary nuclei species have values that systematically smaller than 1.0, while that of secondary nuclei species are systematically larger than 1.0. Moreover, both the re-scale factor and solar modulation potential of beryllium have values which are obviously different from other species. This might indicate that beryllium has the specificity not only on its propagation in the heliosphere, but also on its production cross section. All these new results should be seriously studied in the future.
The DArk Matter Particle Explorer (DAMPE) experiment has recently announced the first results for the measurement of total electron plus positron fluxes between 25 GeV and 4.6 TeV. A spectral break at about 0.9 TeV and a tentative peak excess around 1.4 TeV have been found. However, it is very difficult to reproduce both the peak signal and the smooth background including spectral break simultaneously. We point out that the numbers of events in the two energy ranges (bins) close to the 1.4 TeV excess have $1sigma$ deficits. With the basic physics principles such as simplicity and naturalness, we consider the $-2sigma$, $+2sigma$, and $-1sigma$ deviations due to statistical fluctuations for the 1229.3~GeV bin, 1411.4~GeV bin, and 1620.5~GeV bin. Interestingly, we show that all the DAMPE data can be explained consistently via both the continuous distributed pulsar and dark matter interpretations, which have $chi^{2} simeq 17.2 $ and $chi^{2} simeq 13.9$ (for all the 38 points in DAMPE electron/positron spectrum with 3 of them revised), respectively. These results are different from the previous analyses by neglecting the 1.4 TeV excess. At the same time, we do a similar global fitting on the newly released CALET lepton data, which could also be interpreted by such configurations. Moreover, we present a $U(1)_D$ dark matter model with Breit-Wigner mechanism, which can provide the proper dark matter annihilation cross section and escape the CMB constraint. Furthermore, we suggest a few ways to test our proposal.
91 - Tianjun Li , Zheng Sun , Chi Tian 2014
We systematically study the renormalizable three-term polynomial inflation in the supersymmetric and non-supersymmetric models. The supersymmetric inflaton potentials can be realized in supergravity theory, and only have two independent parameters. W e show that the general renormalizable supergravity model is equivalent to one kind of our supersymmetric models. We find that the spectral index and tensor-to-scalar ratio can be consistent with the Planck and BICEP2 results, but the running of spectral index is always out of the $2sigma$ range. If we do not consider the BICEP2 experiment, these inflationary models can be highly consistent with the Planck observations and saturate its upper bound on the tensor-to-scalar ratio ($r le 0.11$). Thus, our models can be tested at the future Planck and QUBIC experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا