ﻻ يوجد ملخص باللغة العربية
We present a minimal extension of the Standard Model that can simultaneously account for the anomalies in semi-leptonic B meson decays and the muon g-2, give large CP violation in charm decays (up to the value recently measured by LHCb), and provide thermal-relic dark matter, while evading all constraints set by other flavour observables, LHC searches, and dark matter experiments. This is achieved by introducing only four new fields: a vectorlike quark, a vectorlike lepton, and two scalar fields (a singlet and a doublet) that mix due to the electroweak symmetry breaking and provide the dark matter candidate. The singlet-doublet mixing induces chirally-enhanced dipole transitions, which are crucial for the explanation of the muon g-2 discrepancy and the large charm CP violation, and allows to achieve the observed dark matter density in wide regions of the parameter space.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can
We study the constraints of the CP violation in the muon $g-2$ preferred region of the minimal supersymmetric standard model assuming a universal slepton masses within first two generations. We present two particular scenarios where the $g-2$ anomaly
We propose simple models with a flavor-dependent global $U(1)_ell$ and a discrete $mathbb{Z}_2$ symmetries to explain the anomalies in the measured anomalous magnetic dipole moments of muon and electron, $(g-2)_{mu,e}$, while simultaneously accommoda
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop dia
Model-independent techniques for CP violation searches in multi-body charm decays are discussed. Examples of recent analyses from BaBar and LHCb are used to illustrate the experimental challenges involved.