ﻻ يوجد ملخص باللغة العربية
Based on the jet image approach, which treats the energy deposition in each calorimeter cell as the pixel intensity, the Convolutional neural network (CNN) method has been found to achieve a sizable improvement in jet tagging compared to the traditional jet substructure analysis. In this work, the Mask R-CNN framework is adopted to reconstruct Higgs jets in collider-like events, with the effects of pileup contamination taken into account. This automatic jet reconstruction method achieves higher efficiency of Higgs jet detection and higher accuracy of Higgs boson four-momentum reconstruction than traditional jet clustering and jet substructure tagging methods. Moreover, the Mask R-CNN trained on events containing a single Higgs jet is capable of detecting one or more Higgs jets in events of several different processes, without apparent degradation in reconstruction efficiency and accuracy. The outputs of the network also serve as new handles for the $tbar{t}$ background suppression, complementing to traditional jet substructure variables.
Inclusive Higgs boson production at large transverse momentum is induced by different production channels. We focus on the leading production through gluon fusion, and perform a consistent combination of the state of the art calculations obtained in
Jet identification tools are crucial for new physics searches at the LHC and at future colliders. We introduce the concept of Mass Unspecific Supervised Tagging (MUST) which relies on considering both jet mass and transverse momentum varying over wid
We show that the signature of two boosted $W$-jets plus large missing energy is very promising to probe heavy charged resonances ($X^pm$) through the process of $ppto X^+X^-to W^+W^- X^0 X^0$ where $X^0$ denotes dark matter candidate. The hadronic de
By representing each collider event as a point cloud, we adopt the Graphic Convolutional Network (GCN) with focal loss to reconstruct the Higgs jet in it. This method provides higher Higgs tagging efficiency and better reconstruction accuracy than th
Models that produce a flux of semi-relativistic or relativistic boosted dark matter at large neutrino detectors are well-motivated extensions beyond the minimal weakly interacting massive particle (WIMP) paradigm. Current and upcoming liquid argon ti