ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we consider the packing spectra for local dimension of Bernoulli measures supported on Bedford-McMullen carpets. We show that typically the packing dimension of the regular set is smaller than the packing dimension of the attractor. We also consider a specific class of measures for which we are able to calculate the packing spectrum exactly and we show that the packing spectrum is discontinuous as a function on the space of Bernoulli measures.
This paper is devoted to study multifractal analysis of quotients of Birkhoff averages for countable Markov maps. We prove a variational principle for the Hausdorff dimension of the level sets. Under certain assumptions we are able to show that the s pectrum varies analytically in parts of its domain. We apply our results to show that the Birkhoff spectrum for the Manneville-Pomeau map can be discontinuous, showing the remarkable differences with the uniformly hyperbolic setting. We also obtain results describing the Birkhoff spectrum of suspension flows. Examples involving continued fractions are also given.
In this paper we compute the dimension of a class of dynamically defined non-conformal sets. Let $Xsubseteqmathbb{T}^2$ denote a Bedford-McMullen set and $T:Xto X$ the natural expanding toral endomorphism which leaves $X$ invariant. For an open set $ Usubset X$ we let X_U={xin X : T^k(x) otin U text{for all}k}. We investigate the box and Hausdorff dimensions of $X_U$ for both a fixed Markov hole and also when $U$ is a shrinking metric ball. We show that the box dimension is controlled by the escape rate of the measure of maximal entropy through $U$, while the Hausdorff dimension depends on the escape rate of the measure of maximal dimension.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا