ﻻ يوجد ملخص باللغة العربية
In this paper we consider the packing spectra for local dimension of Bernoulli measures supported on Bedford-McMullen carpets. We show that typically the packing dimension of the regular set is smaller than the packing dimension of the attractor. We also consider a specific class of measures for which we are able to calculate the packing spectrum exactly and we show that the packing spectrum is discontinuous as a function on the space of Bernoulli measures.
Let $E$ be a Bedford-McMullen carpet associated with a set of affine mappings ${f_{ij}}_{(i,j)in G}$ and let $mu$ be the self-affine measure associated with ${f_{ij}}_{(i,j)in G}$ and a probability vector $(p_{ij})_{(i,j)in G}$. We study the asymptot
We prove a comprehensive version of the Ruelle-Perron-Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is t
We refine the multifractal formalism for the local dimension of a Gibbs measure $mu$ supported on the attractor $Lambda$ of a conformal iterated functions system on the real line. Namely, for given $alphain mathbb{R}$, we establish the formalism for
We introduce a probability distribution on $mathcal{P}([0,1]^d)$, the space of all Borel probability measures on $[0,1]^d$. Under this distribution, almost all measures are shown to have infinite upper quasi-Assouad dimension and zero lower quasi-Ass
Given a compactly supported probability measure on a Riemannian manifold, we study the asymptotic speed at which it can be approximated (in Wasserstein distance of any exponent p) by finitely supported measure. This question has been studied under th