ﻻ يوجد ملخص باللغة العربية
In this paper we compute the dimension of a class of dynamically defined non-conformal sets. Let $Xsubseteqmathbb{T}^2$ denote a Bedford-McMullen set and $T:Xto X$ the natural expanding toral endomorphism which leaves $X$ invariant. For an open set $Usubset X$ we let X_U={xin X : T^k(x) otin U text{for all}k}. We investigate the box and Hausdorff dimensions of $X_U$ for both a fixed Markov hole and also when $U$ is a shrinking metric ball. We show that the box dimension is controlled by the escape rate of the measure of maximal entropy through $U$, while the Hausdorff dimension depends on the escape rate of the measure of maximal dimension.
We compute the Hausdorff dimension of limit sets generated by 3-dimensional self-affine mappings with diagonal matrices of the form A_{ijk}=Diag(a_{ijk}, b_{ij}, c_{i}), where 0<a_{ijk}le b_{ij}le c_i<1. By doing so we show that the variational principle for the dimension holds for this class.
For self-similar sets on $mathbb{R}$ satisfying the exponential separation condition we show that the natural projections of shift invariant ergodic measures is equal to $min{1,frac{h}{-chi}}$, where $h$ and $chi$ are the entropy and Lyapunov exponen
We study equilibrium measures (Kaenmaki measures) supported on self-affine sets generated by a finite collection of diagonal and anti-diagonal matrices acting on the plane and satisfying the strong separation property. Our main result is that such me
We prove that the upper box dimension of an inhomogeneous self-affine set is bounded above by the maximum of the affinity dimension and the dimension of the condensation set. In addition, we determine sufficient conditions for this upper bound to be
A function which is transcendental and meromorphic in the plane has at least two singular values. On one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either