ترغب بنشر مسار تعليمي؟ اضغط هنا

Elongation is a fundament process in amyloid fiber growth, which is normally characterized by a linear relationship between the fiber elongation rate and the monomer concentration. However, in high concentration regions, a sub-linear dependence was o ften observed, which could be explained by a universal saturation mechanism. In this paper, we modeled the saturated elongation process through a Michaelis-Menten like mechanism, which is constituted by two sub-steps -- unspecific association and dissociation of a monomer with the fibril end, and subsequent conformational change of the associated monomer to fit itself to the fibrillar structure. Typical saturation concentrations were found to be $7-70mu M$ for A$beta$40, $alpha$-synuclein and etc. Furthermore, by using a novel Hamiltonian formulation, analytical solutions valid for both weak and strong saturated conditions were constructed and applied to the fibrillation kinetics of $alpha$-synuclein and silk fibroin.
Microcapsules are a key class of microscale materials with applications in areas ranging from personal care to biomedicine, and with increasing potential to act as extracellular matrix (ECM) models of hollow organs or tissues. Such capsules are conve ntionally generated from non-ECM materials including synthetic polymers. Here, we fabricated robust microcapsules with controllable shell thickness from physically- and enzymatically-crosslinked gelatin and achieved a core-shell architecture by exploiting a liquid-liquid phase separated aqueous dispersed phase system in a one-step microfluidic process. Microfluidic mechanical testing revealed that the mechanical robustness of thicker-shell capsules could be controlled through modulation of the shell thickness. Furthermore, the microcapsules demonstrated environmentally-responsive deformation, including buckling by osmosis and external mechanical forces. A sequential release of cargo species was obtained through the degradation of the capsules. Stability measurements showed the capsules were stable at 37 {deg}C for more than two weeks. Finally, all-aqueous liquid-liquid phase separated and multiphase liquid-liquid phase separated systems were generated with the gel-sol transition of microgel precursors. These smart capsules are promising models of hollow biostructures, microscale drug carriers, and building blocks or compartments for active soft materials and robots.
We consider Gaussian fluctuations about domain walls embedded in one- or two-dimensional spin lattices. Analytic expressions for the free energy of one domain wall are obtained. From these, the temperature dependence of experimentally relevant spatia l scales -- i.e., the correlation length for spin chains and the size of magnetic domains for thin films magnetized out of plane -- are deduced. Stability of chiral order inside domain walls against thermal fluctuations is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا