ﻻ يوجد ملخص باللغة العربية
Elongation is a fundament process in amyloid fiber growth, which is normally characterized by a linear relationship between the fiber elongation rate and the monomer concentration. However, in high concentration regions, a sub-linear dependence was often observed, which could be explained by a universal saturation mechanism. In this paper, we modeled the saturated elongation process through a Michaelis-Menten like mechanism, which is constituted by two sub-steps -- unspecific association and dissociation of a monomer with the fibril end, and subsequent conformational change of the associated monomer to fit itself to the fibrillar structure. Typical saturation concentrations were found to be $7-70mu M$ for A$beta$40, $alpha$-synuclein and etc. Furthermore, by using a novel Hamiltonian formulation, analytical solutions valid for both weak and strong saturated conditions were constructed and applied to the fibrillation kinetics of $alpha$-synuclein and silk fibroin.
Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morpholog
Here, we discuss a collection of cutting-edge techniques and applications in use today by some of the leading experts in the field of correlative approaches in single-molecule biophysics. A key difference in emphasis, compared with traditional single
Many proteins have the potential to aggregate into amyloid fibrils, which are associated with a wide range of human disorders including Alzheimers and Parkinsons disease. In contrast to that of folded proteins, the thermodynamic stability of amyloid
Protein aggregation in the form of amyloid fibrils has important biological and technological implications. Although the self-assembly process is highly efficient, aggregates not in the fibrillar form would also occur and it is important to include t
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their