ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the fundamental questions about the high temperature cuprate superconductors is the size of the Fermi surface (FS) underlying the superconducting state. By analyzing the single particle spectral function for the Fermi Hubbard model as a functi on of repulsion $U$ and chemical potential $mu$, we find that the Fermi surface in the normal state reconstructs from a large Fermi surface matching the Luttinger volume as expected in a Fermi liquid, to a Fermi surface that encloses fewer electrons that we dub the Luttinger Breaking (LB) phase, as the Mott insulator is approached. This transition into a non-Fermi liquid phase that violates the Luttinger count, is a continuous phase transition at a critical density in the absence of any other broken symmetry. We obtain the Fermi surface contour from the spectral weight $A_{vec{k}}(omega=0)$ and from an analysis of the poles and zeros of the retarded Greens function $G_{vec{k}}^{ret}(E=0)$, calculated using determinantal quantum Monte Carlo and analytic continuation methods.We discuss our numerical results in connection with experiments on Hall measurements, scanning tunneling spectroscopy and angle resolved photoemission spectroscopy.
We investigate the emergence of a myriad of phases in the strong coupling regime of the dipolar Hubbard model in two dimensions. By using a combination of numerically unbiased methods in finite systems with analytical perturbative arguments, we show the versatility that trapped dipolar atoms possess in displaying a wide variety of many-body phases, which can be tuned simply by changing the collective orientation of the atomic dipoles. We further investigate the stability of these phases to thermal fluctuations in the strong coupling regime, highlighting that they can be accessed with current techniques employed in cold atoms experiments on optical lattices. Interestingly, both quantum and thermal phase transitions are signalled by peaks or discontinuities in local moment-local moment correlations, which have been recently measured in some of these experiments, so that they can be used as probes for the onset of different phases.
We use numerically unbiased methods to show that the one-dimensional Hubbard model with periodically distributed on-site interactions already contains the minimal ingredients to display the phenomenon of magnetoresistance; i.e., by applying an extern al magnetic field, a dramatic enhancement on the charge transport is achieved. We reach this conclusion based on the computation of the Drude weight and of the single-particle density of states, applying twisted boundary condition averaging to reduce finite-size effects. The known picture that describes the giant magnetoresistance, by interpreting the scattering amplitudes of parallel or antiparallel polarized currents with local magnetizations, is obtained without having to resort to different entities; itinerant and localized charges are indistinguishable.
We study magnetic, transport and thermodynamic properties of the half-filled two-dimensional ($2D$) Hubbard model with layered distributed repulsive interactions using unbiased finite temperature quantum Monte Carlo simulations. Antiferromagnetic lon g-ranged correlations at $T=0$ are confirmed by means of the magnetic structure factor and the onset of short-ranged ones is at a minimum temperature which can be obtained by peaks in susceptibility and specific heat following an RPA prediction. We also show that transport is affected in the large interaction limit and is enhanced in the non-repulsive layers suggesting a change of dimensionality induced by increased interactions. Lastly, we show that by adiabatically switching the interactions in layered distributed patterns reduces the overall temperature of the system with a potential application in cooling protocols in cold atoms systems.
The noninteracting electronic structures of tight binding models on bipartite lattices with unequal numbers of sites in the two sublattices have a number of unique features, including the presence of spatially localized eigenstates and flat bands. Wh en a emph{uniform} on-site Hubbard interaction $U$ is turned on, Lieb proved rigorously that at half filling ($rho=1$) the ground state has a non-zero spin. In this paper we consider a `CuO$_2$ lattice (also known as `Lieb lattice, or as a decorated square lattice), in which `$d$-orbitals occupy the vertices of the squares, while `$p$-orbitals lie halfway between two $d$-orbitals. We use exact Determinant Quantum Monte Carlo (DQMC) simulations to quantify the nature of magnetic order through the behavior of correlation functions and sublattice magnetizations in the different orbitals as a function of $U$ and temperature. We study both the homogeneous (H) case, $U_d= U_p$, originally considered by Lieb, and the inhomogeneous (IH) case, $U_d eq U_p$. For the H case at half filling, we found that the global magnetization rises sharply at weak coupling, and then stabilizes towards the strong-coupling (Heisenberg) value, as a result of the interplay between the ferromagnetism of like sites and the antiferromagnetism between unlike sites; we verified that the system is an insulator for all $U$. For the IH system at half filling, we argue that the case $U_p eq U_d$ falls under Liebs theorem, provided they are positive definite, so we used DQMC to probe the cases $U_p=0,U_d=U$ and $U_p=U, U_d=0$. We found that the different environments of $d$ and $p$ sites lead to a ferromagnetic insulator when $U_d=0$; by contrast, $U_p=0$ leads to to a metal without any magnetic ordering. In addition, we have also established that at density $rho=1/3$, strong antiferromagnetic correlations set in, caused by the presence of one fermion on each $d$ site.
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing and the quantum Hall effect. Cooling to a low en ough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a non-disordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Neel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.
We investigate the harmonic-trap control of size and shape of Mott regions in the Fermi Hubbard model on a square optical lattice. The use of Lanczos diagonalization on clusters with twisted boundary conditions, followed by an average over 50-80 samp les, drastically reduce finite-size effects in some ground state properties; calculations in the grand canonical ensemble together with a local-density approximation (LDA) allow us to simulate the radial density distribution. We have found that as the trap closes, the atomic cloud goes from a metallic state, to a Mott core, and to a Mott ring; the coverage of Mott atoms reaches a maximum at the core-ring transition. A `phase diagram in terms of an effective density and the on-site repulsion is proposed, as a guide to maximize the Mott coverage. We also predict that the usual experimentally accessible quantities, the global compressibility and the average double occupancy (rather, its density derivative) display detectable signatures of the core-ring transition. Some spin correlation functions are also calculated, and predict the existence Neel ordering within Mott cores and rings.
We have examined the behavior of the compressibility, the dc-conductivity, the single-particle gap, and the Drude weight as probes of the density-driven metal-insulator transition in the Hubbard model on a square lattice. These quantities have been o btained through determinantal quantum Monte Carlo simulations at finite temperatures on lattices up to 16 X 16 sites. While the compressibility, the dc-conductivity, and the gap are known to suffer from `closed-shell effects due to the presence of artificial gaps in the spectrum (caused by the finiteness of the lattices), we have established that the former tracks the average sign of the fermionic determinant (<sign>), and that a shortcut often used to calculate the conductivity may neglect important corrections. Our systematic analyses also show that, by contrast, the Drude weight is not too sensitive to finite-size effects, being much more reliable as a probe to the insulating state. We have also investigated the influence of the discrete imaginary-time interval (Deltatau) on <sign>, on the average density (rho), and on the double occupancy (d): we have found that <sign> and rho are more strongly dependent on Delta tau away from closed-shell configurations, but d follows the Deltatau^2 dependence in both closed- and open-shell cases.
161 - Thereza Paiva 2011
A major challenge in realizing antiferromagnetic (AF) and superfluid phases in optical lattices is the ability to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical potential, temp erature and repulsion using unbiased determinantal quantum Monte Carlo methods, and we then use the local density approximation to model a harmonic trap. We show that increasing repulsion leads to cooling, but only in a trap, due to the redistribution of entropy from the center to the metallic wings. Thus, even when the average entropy per particle is larger than that required for antiferromagnetism in the homogeneous system, the trap enables the formation of an AF Mott phase.
41 - Felipe Mondaini 2008
We have considered the half-filled disordered attractive Hubbard model on a square lattice, in which the on-site attraction is switched off on a fraction $f$ of sites, while keeping a finite $U$ on the remaining ones. Through Quantum Monte Carlo (QMC ) simulations for several values of $f$ and $U$, and for system sizes ranging from $8times 8$ to $16times 16$, we have calculated the configurational averages of the equal-time pair structure factor $P_s$, and, for a more restricted set of variables, the helicity modulus, $rho_s$, as functions of temperature. Two finite-size scaling {it ansatze} for $P_s$ have been used, one for zero-temperature and the other for finite temperatures. We have found that the system sustains superconductivity in the ground state up to a critical impurity concentration, $f_c$, which increases with $U$, at least up to U=4 (in units of the hopping energy). Also, the normalized zero-temperature gap as a function of $f$ shows a maximum near $fsim 0.07$, for $2lesssim Ulesssim 6$. Analyses of the helicity modulus and of the pair structure factor led to the determination of the critical temperature as a function of $f$, for $U=3,$ 4 and 6: they also show maxima near $fsim 0.07$, with the highest $T_c$ increasing with $U$ in this range. We argue that, overall, the observed behavior results from both the breakdown of CDW-superconductivity degeneracy and the fact that free sites tend to push electrons towards attractive sites, the latter effect being more drastic at weak couplings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا