ﻻ يوجد ملخص باللغة العربية
We use numerically unbiased methods to show that the one-dimensional Hubbard model with periodically distributed on-site interactions already contains the minimal ingredients to display the phenomenon of magnetoresistance; i.e., by applying an external magnetic field, a dramatic enhancement on the charge transport is achieved. We reach this conclusion based on the computation of the Drude weight and of the single-particle density of states, applying twisted boundary condition averaging to reduce finite-size effects. The known picture that describes the giant magnetoresistance, by interpreting the scattering amplitudes of parallel or antiparallel polarized currents with local magnetizations, is obtained without having to resort to different entities; itinerant and localized charges are indistinguishable.
We analyze the localization properties of the disordered Hubbard model in the presence of a synthetic magnetic field. An analysis of level spacing ratio shows a clear transition from ergodic to many-body localized phase. The transition shifts to larg
We introduce a variational state for one-dimensional two-orbital Hubbard models that intuitively explains the recent computational discovery of pairing in these systems when hole doped. Our Ansatz is an optimized linear superposition of Affleck-Kenne
Rydberg chains provide an appealing platform for probing conformal field theories (CFTs) that capture universal behavior in a myriad of physical settings. Focusing on a Rydberg chain at the Ising transition separating charge density wave and disorder
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type
Cluster Perturbation Theory (CPT) is a computationally economic method commonly used to estimate the momentum and energy resolved single-particle Greens function. It has been used extensively in direct comparisons with experiments that effectively me